Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có ^A + ^B= 90° (ΔABC vuông tại C)
^A + 2^A= 90°
3^A = 90°
^A = 30°
^B= 90° - 30°= 60°
b)Xét ΔACB và ΔACD có
AC là cạnh chung
^ACB= ^ACD (=90°)
CD= CB (gt)
Vậy ΔACB = ΔACD
=> AD= AB
Xét ΔANC và ΔAMC có
AN= AM (gt)
^NAC=^MAC ( ΔACB = ΔACD )
AC là cạnh chung
Vậy ΔANC = ΔAMC
=> CN= CM
c) Xét ΔNCI và ΔMCI có
CN=CM (cmt)
^NCI=^MCI ( ΔANC = ΔAMC)
CI là cạnh chung
Vậy ΔNCI = ΔMCI
=> IN= IM
Ta có hình vẽ:
A B C x y H
a) Xét Δ ABC có: BAC + ACB + ABC = 180o (tổng 3 góc của Δ)
=> BAC + 45o + 45o = 180o
=> BAC + 90o = 180o
=> BAC = 180o - 90o = 90o
b) Ta có: BAC + BAx = 180o (kề bù)
=> 90o + BAx = 180o
=> BAx = 180o - 90o = 90o
Vì Ay là phân giác của BAx nên \(xAy=yAB=\frac{BAx}{2}=\frac{90^o}{2}=45^o\)
Có: yAB = ABC = 45o
Mà yAB và ABC là 2 góc ở vị trí so le trong nên Ay // BC (đpcm)
c) Vì Ay // BC; \(AH\perp Ay\) => \(BC\perp Ay\)
=> AHC = 90o
=> HAC + ACH = 90o
=> HAC + 45o = 90o
=> HAC = 90o - 45o
=> HAC = 45o = ABC (đpcm)
A B C H K I 1 2
a.Vì tam giác ABC cân tại A nên AH vừa là đường cao vừa là trung tuyến
=> HB=HC
b. Vì HB=HC=10:2=5(cm)
Áp dụng định lý Pi-ta -go vào tam giác AHB có
\(AH=\sqrt{AB^2-HB^2}=\sqrt{13^2-5^2}=12\left(cm\right)\)
c. Xét 2 tam giác AHK và tam giác AHI có:
Vì AH là đường cao mà tam giác ABC cân tại A nên AH cx là đường phân giác:
nên ta có: \(\widehat{A}_1=\widehat{A_2}\)
AH chung
=> tam giác AHK=tam giác AHI(c.g.c)
=>HI=HK(2 cạnh tương ứng )
d. Xl nha câu d quên cách ch/m rồi..
Bài 1:
a)+ Vì AB = ACNÊN
==>Tam giác ABC cân tại A
==>góc ABI = góc ACI
+ Xét tam giác ABI và tam giác ACI có:
AI là cạch chung
AB = AC(gt)
BI = IC ( I là trung điểm của BC)
Vậy tam giác ABI = tam giác ACI (c.c.c)
==> góc BAI = góc CAI ( 2 góc tương ứng )
==>AI là tia phân giác của góc BAC
b)
Xét tam giác BAM và tam giác BAN có:
AB = AC (gt)
góc B = góc C (cmt)
BM = CN ( gt )
Vậy tam giác BAM = tam giác CAN (c.g.c)
==> AM = AN (2 cạnh tương ứng)
c)
vì tam giác BAI = tam giác CAI (cmt)
==>góc AIB = góc AIC (2 góc tương ứng)
Mà góc AIB+ góc AIC = 180độ ( kề bù)
nên AIB=AIC=180:2=90
==>AI vuông góc với BC
\(a,\widehat{A}=\widehat{CAB}=123^0\left(đối.đỉnh\right)\\ \widehat{CAB}+\widehat{ABD}=123^0+57^0=180^0\)
Mà 2 góc này ở vị trí TCP nên \(a//b\)
\(b,\left\{{}\begin{matrix}a//b\\a\perp d\end{matrix}\right.\Rightarrow b\perp d\)