Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a ) Vì Oa ⊥⊥ OM
=> aOmˆaOm^ = 90o
Mà MOaˆMOa^ + aONˆaON^ = MONˆMON^
=> aOnˆaOn^ = MONˆMON^ - MOaˆMOa^ = 120o - 90o = 30o
Vậy aONˆaON^ = 30o
Vì Ob ⊥⊥ ON
=> bONˆbON^ = 90o
Mà bOMˆbOM^ + bONˆbON^ = MONˆMON^
=> bOMˆbOM^= MONˆMON^ - bONˆbON^ = 120o - 90o = 30o
Vậy bOMˆbOM^ = aONˆ

a) Ta có :
AD=AC (gt) suy ra tam giác ADC là tam giác cân tại góc DAC , suy ra góc ACD =góc ADC (tc)
Theo đấu bài ta có : góc A = 90 độ, suy ra góc ACD = (180 - 90 ) .1/2 = 45 độ
b) Xét tam giác ADE và tam giác ACE có :
AE chung , AC=AD (gt) , DAE=CAE(AE là p/g của góc DAC)
từ đó, suy ra : 2 tam giác bằng nhau với trường hợp (c.g.c)
vậy DE=CE (đpcm)
c) có AE là phân giác góc DAC, mà tam giác DAC là tam giác vân thì : AE là đường cao (tc)

cho m2 -n2\(\le\)5 . Tìm GTNN của m+ n + m.n + 1 ( m,n là 2 số thực )

Vì AD là phân giác BAC => DAC = DAB = BAC : 2 hay 2DAC = 2DAB = BAC
Vì CE là phân giác BCA => BCE = ECA = BCA : 2 hay 2BCE = 2ECA = BCA
Xét △ABC vuông tại B có: BAC + BCA = 90o (2 góc nhọn trong △ vuông)
=> 2DAC + 2ECA = 90o => DAC + ECA = 45o
Xét △ICA có: ICA + IAC + CIA = 180o (tổng 3 góc trong tam giác)
=> 45o + CIA = 180o => CIA = 135o
b, Xét △ABC có BCx là góc ngoài của △ tại đỉnh C, ta có: BCx = CBA + BAC => BCx = 90o + BAC
Vì CK là phân giác BCx \(\Rightarrow\frac{\widehat{BCx}}{2}=\frac{90^o+\widehat{BAC}}{2}\)\(\Rightarrow\widehat{BCK}=45^o+\widehat{DAC}\)
Xét △KCA có: CKA + KCA + CAK = 180o (tổng 3 góc trong △)
=> CKA + KCD + DCI + ICA + CAK = 180o
=> CKA + 45o + DAC + DCI + ICA + CAK = 180o
=> CKA + (DAC + ICA) + (DCI + CAK) = 135o
=> CKA + 45o + 45o = 135o
=> CKA = 45o