Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) Ta có: ΔABC cân tại A(gt)
nên \(\widehat{B}=\widehat{C}=\dfrac{180^0-\widehat{A}}{2}\)(Số đo của các góc ở đáy trong ΔABC cân tại A)(1)
\(\Leftrightarrow\widehat{B}=\widehat{C}=\dfrac{180^0-50^0}{2}=65^0\)
Vậy: \(\widehat{B}=65^0\); \(\widehat{C}=65^0\)
2) Xét ΔADE có AD=AE(gt)
nên ΔADE cân tại A(Định nghĩa tam giác cân)
⇒\(\widehat{ADE}=\dfrac{180^0-\widehat{A}}{2}\)(Số đo của một góc ở đáy trong ΔADE cân tại A)(2)
Từ (1) và (2) suy ra \(\widehat{ADE}=\widehat{ABC}\)
mà \(\widehat{ADE}\) và \(\widehat{ABC}\) là hai góc ở vị trí đồng vị
nên DE//BC(Dấu hiệu nhận biết hai đường thẳng song song)
3) Ta có: AD+DB=AB(D nằm giữa A và B)
AE+EC=AC(E nằm giữa A và C)
mà AB=AC(ΔABC cân tại A)
và AD=AE(gt)
nên DB=EC
Xét ΔDBC và ΔECB có
DB=EC(cmt)
\(\widehat{DBC}=\widehat{ECB}\)(cmt)
BC chung
Do đó: ΔDBC=ΔECB(c-g-c)
⇒CD=BE(hai cạnh tương ứng)
4) Ta có: ΔDBC=ΔECB(cmt)
nên \(\widehat{DCB}=\widehat{EBC}\)(hai góc tương ứng)
hay \(\widehat{OBC}=\widehat{OCB}\)
Xét ΔOBC có \(\widehat{OBC}=\widehat{OCB}\)(cmt)
nên ΔOBC cân tại O(Định lí đảo của tam giác cân)
Ta có: \(\widehat{OBC}=\widehat{OCB}\)(cmt)
mà \(\widehat{OBC}=\widehat{OED}\)(hai góc so le trong, DE//BC)
và \(\widehat{OCB}=\widehat{ODE}\)(hai góc so le trong, DE//BC)
nên \(\widehat{ODE}=\widehat{OED}\)
Xét ΔODE có \(\widehat{ODE}=\widehat{OED}\)(cmt)
nên ΔODE cân tại O(Định lí đảo của tam giác cân)
a: Xét ΔABC có
BI là phân giác
CI là phân giác
DO đó: AI là tia phân giác của góc BAC
b: Xét ΔDIB có \(\widehat{DIB}=\widehat{DBI}\)
nên ΔDIB cân tại D
c: Xét ΔEIC có \(\widehat{EIC}=\widehat{ECI}\)
nên ΔEIC cân tại E
a) Xét \(\Delta ABD\)và \(\Delta EBD\)có :
BD ( cạnh chung )
\(\widehat{ABD}=\widehat{EBD}\)( gt )
Suy ra : \(\Delta ABD\)= \(\Delta EBD\)( cạnh huyền - góc nhọn )
\(\Rightarrow\)AB = BE
\(\Rightarrow\)\(\Delta ABE\)cân tại B mà \(\widehat{ABE}=60^o\)nên \(\Delta ABE\)đều
c) vì \(\widehat{ABC}+\widehat{ACB}=90^o\)\(\Rightarrow\widehat{ACB}=90^o-60^o=30^o\)
Mà \(\widehat{ABD}=\widehat{DBE}=30^o\)
\(\Rightarrow\)\(\Delta DBC\)cân tại D có DE là đường cao nên cũng là trung tuyến
\(\Rightarrow\)E là trung điểm của BC
d) \(\Delta ABE\)đều có AH là đường cao nên cũng là đường trung trực
\(\Rightarrow\)BF = EF
\(\Rightarrow\)\(\Delta BFE\)cân tại F
\(\Rightarrow\)\(\widehat{FBE}=\widehat{FEB}\)
Mà \(\widehat{FBE}=\widehat{ACB}\)
\(\Rightarrow\)\(\widehat{ACB}=\widehat{FEB}\)
Mà 2 góc này ở vị trị đồng vị nên EF // AC
a: BC=15cm
b: Xét ΔBAD vuông tại A và ΔBED vuông tại E có
BD chung
\(\widehat{ABD}=\widehat{EBD}\)
Do đó: ΔBAD=ΔBED
c: Ta có: ΔBAD=ΔBED
nên DA=DE
a: Xét ΔBAD vuông tại A và ΔBED vuông tại E có
BD chung
góc ABD=góc EBD
=>ΔBAD=ΔBED
=>BA=BE; DA=DE
b: Xét ΔDBC có góc DBC=góc DCB
nên ΔDBC cân tại D
e mới lớp 5 nên chịu
thế cũng ko cần bình luận đâu:)