Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
áp dụng định lý phân giác ta có:\(\left\{{}\begin{matrix}\dfrac{DB}{DC}=\dfrac{AB}{AC}\\\dfrac{EC}{EA}=\dfrac{BC}{AB}\\\dfrac{FA}{FB}=\dfrac{AC}{BC}\end{matrix}\right.\)
\(\dfrac{DB}{DC}.\dfrac{EC}{EA}.\dfrac{FA}{FB}=\dfrac{AB}{AC}.\dfrac{BC}{AB}.\dfrac{AC}{BC}=1\)
a: BC=10cm
Xét ΔABC có AD là phân giác
nên BD/CD=AB/AC=3/4
=>BD/3=CD/4
Áp dụng tính chất của dãy tỉ số bằng nhau,ta được:
\(\dfrac{BD}{3}=\dfrac{CD}{4}=\dfrac{BD+CD}{3+4}=\dfrac{10}{7}\)
Do đó: BD=30/7(cm); CD=40/7(cm)
b: Xét ΔABC có DE//AC
nên DE/AC=BD/BC
=>\(\dfrac{DE}{8}=\dfrac{30}{7}:10=\dfrac{3}{7}\)
=>DE=24/7(cm)
a) Ta có : AD + DB = AB ( vì D nằm trên cạnh AB)
=> AD + 2 = 8
=> AD = 6cm
Do đó : ADAB=68=34����=68=34
AEAC=912=34����=912=34
=> ADAB=AEAC=34����=����=34
b) Xét ΔADEΔ��� và ΔABCΔ��� có :
ˆA�^ chung
ADAB=AEAC����=����
=> ΔADE∽ΔABC(c.g.c)Δ���∽Δ���(�.�.�)
c) Vì IA�� là đường phân giác của ΔABCΔ��� nên
=> ABAC=IBIC=812=23����=����=812=23
Mà ADAB=AEAC����=���� (ΔADE∽ΔABC(cmt))(Δ���∽Δ���(���)) ⇒ABAC=ADAE=23⇒����=����=23
=>IBIC=ADAE⇒IB⋅AE=IC⋅AD(đpcm)����=����⇒��⋅��=��⋅��(đ���)
a:BC=căn 6^2+8^2=10cm
Xét ΔABC có AD là phân giác
nên BD/DC=AB/AC
=>BD/DC=3/4
=>BD/3=CD/4=(BD+CD)/(3+4)=10/7
=>BD=30/7cm
b: Xét ΔCED vuông tại E và ΔCAB vuông tại A có
góc C chung
=>ΔCED đồng dạng với ΔCAB
=>S CED/S CAB=(CD/CB)^2=(4/7)^2=16/49
a: BC=10cm
Xét ΔABC có BD là phân giác
nên DA/AB=DC/BC
=>DA/6=DC/10
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{DA}{6}=\dfrac{DC}{10}=\dfrac{DA+DC}{6+10}=\dfrac{8}{16}=\dfrac{1}{2}\)
Do đó:DA=3cm; DC=5cm
b: Xét ΔBHA có BI là phân giác
nên IH/IA=BH/BA(1)
Xét ΔABC có BD là phân giác
nên AD/DC=BA/BC(2)
Xét ΔABC vuông tại A có AH là đường cao
nên \(AB^2=BH\cdot BC\)
hay BA/BC=BH/BA(3)
Từ (1), (2) và (3) suy ra IH/IA=AD/DC
a) Xét ΔABC có AD là đường phân giác ứng với cạnh BC(gt)
nên \(\dfrac{DB}{DC}=\dfrac{AB}{AC}\)(Tính chất đường phân giác của tam giác)
\(\Leftrightarrow\dfrac{DB}{DC}=\dfrac{6}{8}=\dfrac{3}{4}\)
Chọn B