K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 1 2022

áp dụng định lý phân giác ta có:\(\left\{{}\begin{matrix}\dfrac{DB}{DC}=\dfrac{AB}{AC}\\\dfrac{EC}{EA}=\dfrac{BC}{AB}\\\dfrac{FA}{FB}=\dfrac{AC}{BC}\end{matrix}\right.\)

\(\dfrac{DB}{DC}.\dfrac{EC}{EA}.\dfrac{FA}{FB}=\dfrac{AB}{AC}.\dfrac{BC}{AB}.\dfrac{AC}{BC}=1\)

a: BC=10cm

Xét ΔABC có AD là phân giác

nên BD/CD=AB/AC=3/4

=>BD/3=CD/4

Áp dụng tính chất của dãy tỉ số bằng nhau,ta được:

\(\dfrac{BD}{3}=\dfrac{CD}{4}=\dfrac{BD+CD}{3+4}=\dfrac{10}{7}\)

Do đó: BD=30/7(cm); CD=40/7(cm)

b: Xét ΔABC có DE//AC

nên DE/AC=BD/BC

=>\(\dfrac{DE}{8}=\dfrac{30}{7}:10=\dfrac{3}{7}\)

=>DE=24/7(cm)

5 tháng 3 2023

a) Ta có : AD + DB = AB ( vì D nằm trên cạnh AB)

=> AD + 2 = 8

=> AD = 6cm

Do đó : ADAB=68=34����=68=34

AEAC=912=34����=912=34

=> ADAB=AEAC=34����=����=34

b) Xét ΔADEΔ��� và ΔABCΔ��� có :

ˆA�^ chung

ADAB=AEAC����=����

=> ΔADE∽ΔABC(c.g.c)Δ���∽Δ���(�.�.�) 

c) Vì IA�� là đường phân giác của ΔABCΔ��� nên

=> ABAC=IBIC=812=23����=����=812=23 

Mà ADAB=AEAC����=���� (ΔADE∽ΔABC(cmt))(Δ���∽Δ���(���)) ⇒ABAC=ADAE=23⇒����=����=23

=>IBIC=ADAE⇒IB⋅AE=IC⋅AD(đpcm)����=����⇒��⋅��=��⋅��(đ���)

 

 

image 

a:BC=căn 6^2+8^2=10cm

Xét ΔABC có AD là phân giác

nên BD/DC=AB/AC

=>BD/DC=3/4

=>BD/3=CD/4=(BD+CD)/(3+4)=10/7

=>BD=30/7cm

b: Xét ΔCED vuông tại E và ΔCAB vuông tại A có

góc C chung

=>ΔCED đồng dạng với ΔCAB

=>S CED/S CAB=(CD/CB)^2=(4/7)^2=16/49

 

26 tháng 2 2022

-Tham khảo:

https://hoc24.vn/cau-hoi/.4916932418792

a: BC=10cm

Xét ΔABC có BD là phân giác

nên DA/AB=DC/BC

=>DA/6=DC/10

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{DA}{6}=\dfrac{DC}{10}=\dfrac{DA+DC}{6+10}=\dfrac{8}{16}=\dfrac{1}{2}\)

Do đó:DA=3cm; DC=5cm

b: Xét ΔBHA có BI là phân giác

nên IH/IA=BH/BA(1)

Xét ΔABC có BD là phân giác

nên AD/DC=BA/BC(2)

Xét ΔABC vuông tại A có AH là đường cao

nên \(AB^2=BH\cdot BC\)

hay BA/BC=BH/BA(3)

Từ (1), (2) và (3) suy ra IH/IA=AD/DC

a) Xét ΔABC có AD là đường phân giác ứng với cạnh BC(gt)

nên \(\dfrac{DB}{DC}=\dfrac{AB}{AC}\)(Tính chất đường phân giác của tam giác)

\(\Leftrightarrow\dfrac{DB}{DC}=\dfrac{6}{8}=\dfrac{3}{4}\)