Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a=130 và d=50
=>a+d=180
mà a và d là hai góc tcp
=>ab//cd
=>là hình thang
mà hai đg chéo ac=bd
=>HBH
1: Đặt góc A=a; góc B=b; góc C=c; góc D=d
Theo đề, ta có: a/1=b/2=c/3=d/4 và a+b+c+d=360
Áp dụng tính chất của DTSBN, ta được:
a/1=b/2=c/3=d/4=(a+b+c+d)/(1+2+3+4)=360/10=36
=>a=36; b=72; c=108; d=144
2:
góc C+góc D=360-130-105=230-105=125
góc C-góc D=25 độ
=>góc C=(125+25)/2=75 độ và góc D=75-25=50 độ
3:
góc B=360-57-110-75=118 độ
số đo góc ngoài tại B là:
180-118=62 độ
Ta có: góc B- góc A=200 <=> Góc B= góc A+200 (1) ; góc C= 3 góc A ( giả thiết) (2) ; góc D- góc C=200 <=> góc D= 3 góc A+200 (theo(2))
Mà : góc A+ góc B+ góc C+ góc D=3600 (*). Thay (1);(2);(3) vào (*), ta được: Góc A+ góc A+200+3 góc A+3 góc A+200=3600
<=> Góc A= 400 => Các góc còn lại
Gọi số đo góc A là x
thì số đo góc B là: x + 20
số đo góc C là: 3x => số đo góc D là: 3x + 20
Ta có: \(x+\left(x+20\right)+3x+\left(3x+20\right)=180\)
\(\Leftrightarrow\)\(8x=140\)
\(\Leftrightarrow\)\(x=17,5\)
Vậy góc A = 17,50
góc B = 17,50 + 200 = 37,50
góc C = 17,5 . 3 = 52,50
góc D = 52,50 + 200 = 72,50
bạn tham khảo ở đây nha có mấy cách giải đấy mình chưa học đến lướp 8 nên chỉ giúp bạn tìm được thôi https://vn.answers.yahoo.com/question/index?qid=20130616064409AAyMJ8M
Trên cạnh AD bạn lấy điểm E sao cho AE = AB => hai tam giác ACE và ACB bằng nhau (c.g.c)
=> CE = CB (1)
và góc AEC = ABC = 110 độ.
xét tam giác CED có D = 70 đô.
theo tính chất góc ngoài AEC = tổng hai góc trong không kề nó. Bạn dễ dàng tính được ECD = 40 độ.
Từ đó có được góc CED = 70 độ
=> tam giác CED cân tại C , tức là CE = CD (2)
Từ (1) và (2) => CB = CD (đpcm)
Ta có tổng 4 góc trong tứ giác là \(360^o\)
Hay: \(\widehat{A}+\widehat{B}+\widehat{C}+\widehat{D}=360^o\)
Mà: \(\widehat{D}=50^o;\widehat{B}=130^o;\widehat{A}=\dfrac{5}{4}\widehat{C}\)
Thay vào ta có:
\(\dfrac{5}{4}\widehat{C}+130^o+\widehat{C}+50^o=360^o\)
\(\Rightarrow\dfrac{9}{4}\widehat{C}+180^o=360^o\)
\(\Rightarrow\dfrac{9}{4}\widehat{C}=180^o\)
\(\Rightarrow\widehat{C}=180:\dfrac{9}{4}=80^o\)
Ta tìm được góc A:
\(\widehat{A}=\dfrac{5}{4}\widehat{C}=100^o\)
Theo định lý tổng 4 góc trong tứ giác :
\(\widehat{A}+\widehat{B}+\widehat{C}+\widehat{D}=360^o\\ \Leftrightarrow\dfrac{5}{4}\widehat{C}+130^o+\widehat{C}+50^o=360^o\\ \Rightarrow\dfrac{9}{4}\widehat{C}=360^o-130^o-50^o\\ \Rightarrow\dfrac{9}{4}\widehat{C}=180^o\\ \Rightarrow\widehat{C}=80^o\)
\(\Rightarrow\widehat{A}=\dfrac{5}{4}\times80^o=100^o\)