Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
vì (C) đi qua điểm A nên tọa độ điểm A thỏa mãn pt \(y=\frac{ax^2-bx}{x-1}\) ta có \(\frac{5}{2}=\frac{a+b}{-2}\Rightarrow a+b=-5\)
vì tiếp tuyến của đồ thị tại điểm O có hệ số góc =-3 suy ra y'(O)=-3
ta có \(y'=\frac{ax^2-2ax+b}{\left(x-1\right)^2}\) ta có y'(O)=b=-3 suy ra a=-2
vậy ta tìm đc a và b
Đáp án là A
Thiết diện qua trục là hình vuông nên hình trụ có chiều cao h là độ dài cạnh bên và bằng 2 lần bán kính đáy R.
THeo đề bài, đường kính của hình tròn đáy của nón bằng 2a. Vậy bán kính R = a.
Chiều cao của hình nón bằng chiều cao của tam giác đều, nên h = a√3 và
đường sinh l = = 2a.
Vậy diện tích xung quanh của hình nón là:
Sxq = πRl = 2a2π ( đơn vị diện tích).
Thể tích khối nón là:
.
Câu hỏi nào của Võ Nguyễn Thái cũng có Võ Đoong Anh Tuấn làm,có khúc mắc
hoành độ giao điểm là nghiệm của pt
\(x^3+3x^2+mx+1=1\Leftrightarrow x\left(x^2+3x+m\right)=0\)
\(x=0;x^2+3x+m=0\)(*)
để (C) cắt y=1 tại 3 điểm phân biệt thì pt (*) có 2 nghiệm phân biệt khác 0
\(\Delta=3^2-4m>0\) và \(0+m.0+m\ne0\Leftrightarrow m\ne0\)
từ pt (*) ta suy ra đc hoành độ của D, E là nghiệm của (*)
ta tính \(y'=3x^2+6x+m\)
vì tiếp tuyến tại Dvà E vuông góc
suy ra \(y'\left(x_D\right).y'\left(x_E\right)=-1\)
giải pt đối chiếu với đk suy ra đc đk của m
Phương pháp
Công thức tính diện tích xung quanh hình trụ có bán kính đáy R, chiều cao h: S x q = 2 π r h
Công thức tính thể tích của khối trụ có bán kính đáy R và chiều cao h: V = π R 2 h
Cách giải
Đáp án A
Giả sử cạnh hình vuông là a
Khi đó bán kính đáy hình trụ r = a 2 , chiều cao h = a
Ta có: S x q = 2 π r h = π a 2 = 20 π
⇒ a = 20 ⇒ V = π r 2 h = π a 3 4 = 10 π 5