\(\widehat{A}\)=120 độ . Tia Ax tạo với tia AD một góc 15 độ v...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 7 2018

Bạn mở chuyên mục Câu hỏi hay đi. Có lời giải đấy.

Chúc bạn học tốt.

15 tháng 12 2017

D A B C N H K M

15 tháng 12 2017

Kẻ\(AK\perp AM\left(K\in OC\right)\)

\(AH\perp DC\left(H\in DC\right)\)

Áp dụng hệ thức giữa cạnh và đường cao và tam giác vuông AKN , đường cao AH , ta có

\(\dfrac{1}{AK^2}+\dfrac{1}{AN^2}=\dfrac{1}{AH^2}\left(1\right)\)

Xét \(\Delta AMB\)\(\Delta ADK\)có:

\(\left\{{}\begin{matrix}AD=AB\\\widehat{B}=\widehat{D}\\\widehat{DAK}=\widehat{MAB}\end{matrix}\right.\)

=> \(\Delta AMB=\Delta AKD\)

=> AM=AK ( 2 cạnh tương ứng)(2)

Áp dụng định lý py-ta-go , ta có :

\(HD^2+AH^2=AD^2\)

=>\(AH^2=AD^2-HD^2\)(3)

\(\Delta ADH\perp H\)có :\(\widehat{ADH}+\widehat{DAH}=90^o\)

=> \(\widehat{ADH}=90^o-60^o\)(Vì ABCD là h.thoi có góc DAB=120 độ => góc DAH=60 độ)

=>\(\widehat{ADH}=30^o\)

=>\(DH=\dfrac{1}{2}AD\)(4)

Thay (4) vào (3) , ta có : \(AH^2=AD^2-\left(\dfrac{1}{2}.AD\right)^2\)

=\(\dfrac{3}{4}.AD^2\)

=\(\dfrac{3}{4}.AB^2\)(vì AB=AD)

Thay (2) vào (5) , ta có :

\(\dfrac{1}{AM^2}+\dfrac{1}{AN^2}=\dfrac{4}{3AB^2}\)

<=> \(\dfrac{3}{AM^2}+\dfrac{3}{AN^2}=\dfrac{4}{AB^2}\)

9 tháng 7 2017

Một bài toán cổ điển:

A B C D E F .

Chứng minh rằng \(\frac{1}{AE^2}+\frac{1}{AF^2}=\frac{1}{AB^2}\)

Thôi t chỉ liên tưởng thế thôi, vào bài nào :vv

A B C D E F H H

Cần chứng minh \(\frac{1}{AE^2}+\frac{1}{AF^2}=\frac{1}{3}\Leftrightarrow\frac{4}{AE^2}+\frac{4}{AF^2}=\frac{4}{3}\)

Ta có: AB//CF ( do ABCD là hình thoi ) \(\Rightarrow\frac{AB}{AE}=\frac{CF}{EF}\Leftrightarrow\frac{4}{AE^2}=\frac{CF^2}{EF^2}\)(theo định lý thales)

Tương tự ta cũng có: \(\frac{4}{AF^2}=\frac{CE^2}{EF^2}\)\(\Rightarrow\frac{4}{AE^2}+\frac{4}{AF^2}=\frac{CE^2+CF^2}{EF^2}\)

giờ chỉ cần chứng minh \(\frac{CE^2+CF^2}{EF^2}=\frac{4}{3}\Leftrightarrow EF=\frac{\sqrt{3\left(CE^2+CF^2\right)}}{2}\)(*)

Kẻ CH vuông góc với EF. Dễ dàng chứng minh góc CEF=45 và CFE=15

Trong tam giác vuông EHC:\(EH=CH.\cot45^0\)

Trong tam giác vuông FHC:\(FH=CH.\cot15\)\(\Rightarrow EF=CH.\left(\cot45^0+\cot15^0\right)\)

Tương tự ta có:\(CH=CE.\sin45^0\)\(\Rightarrow CE=\frac{CH}{\sin45^o}\)và \(CF=\frac{CH}{\sin15^o}\)

(*) được chứng minh khi \(4\left(\cot45+\cot15\right)^2=\frac{3}{\left(\sin45\right)^2}+\frac{3}{\left(\sin15\right)^2}\)

hình như nhầm ở đâu ý :< ứ gõ lại đâu