Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: ACEF là hình bình hành(gt)
nên AF//EC và AF=EC(Hai cạnh đối trong hình bình hành ACEF)
mà K\(\in\)EC và CE=CK(C là trung điểm của EK)
nên AF//CK và AF=CK
Xét tứ giác AFCK có
AF//CK(cmt)
AF=CF(cmt)
Do đó: AFCK là hình bình hành(Dấu hiệu nhận biết hình bình hành)
Suy ra: Hai đường chéo AC và FK cắt nhau tại trung điểm của mỗi đường(Định lí hình bình hành)(1)
Ta có: ABCD là hình thoi(gt)
nên Hai đường chéo AC và BD vuông góc với nhau tại trung điểm của mỗi đường(Định lí hình thoi)(2)
Từ (1) và (2) suy ra FK,BD,CA đồng quy tại một điểm(đpcm)
c) Ta có: BA=BC(ABCD là hình thoi)
mà AB=EC(gt)
và \(EC=\dfrac{1}{2}EK\)(C là trung điểm của EK)
nên \(BC=\dfrac{1}{2}EK\)
Xét ΔBEK có
BC là đường trung tuyến ứng với cạnh EK(C là trung điểm của EK)
\(BC=\dfrac{1}{2}EK\)(cmt)
Do đó: ΔBEK vuông tại B(Định lí 2 về áp dụng hình chữ nhật vào tam giác vuông)
a)Ta có
BK=KC (GT)
AK=KD( Đối xứng)
suy ra tứ giác ABDC là hình bình hành (1)
mà góc A = 90 độ (2)
từ 1 và 2 suy ra tứ giác ABDC là hình chữ nhật
b) ta có
BI=IA
EI=IK
suy ra tứ giác AKBE là hình bình hành (1)
ta lại có
BC=AD ( tứ giác ABDC là hình chữ nhật)
mà BK=KC
AK=KD
suy ra BK=AK (2)
Từ 1 và 2 suy ra tứ giác AKBE là hình thoi
c) ta có
BI=IA
BK=KC
suy ra IK là đường trung bình
suy ra IK//AC
IK=1/2AC
mà IK=1/2EK
Suy ra EK//AC
EK=AC
Suy ra tứ giác AKBE là hình bình hành
a, Trong △ABC có:
D là trung điểm của BC, E là trung điểm của AC.
⇒ DE là đường trung bình của △ABC.
⇒ DE = 1/2AB (1)
và: DE // AB (2)
Từ (1) suy ra: DE = 1/2 . 6 = 3.
b, Ta có: F là điểm đối xứng với D qua E nên:
DE = DF
⇒ DF = 2DE = 2 . 1/2AB = AB (3) (theo (1)
Từ (2),(3) suy ra: ABDF là hình bình hành.
c, Do ABDF là hình bình hành nên:
AF // BD (4) và: AF = BD
Mặt khác, ta có: D là trung điểm của BC
=> BD = BC. Mà: AF = BD (cmt)
=> BC = AF (5).
Từ (4) và (5) suy ra: Tứ giác ADCF là hình bình hành.
Ta lại có: AB⊥AC (góc A = 90o)
và: AB // DF
⇒ AC⊥DF.
Vậy, hình bình hành ADCF có hai đường chéo vuông góc hay:
ADCF là hình thoi.
Ta có: ADCF là hình thoi ⇒AE = 1/2AC = 4.
Xét △ADE có: góc E = 90∘ (AC⊥DF)
⇒ AE2 + DE2 = AD2 (Định lý Pythagore)
thay số: 42 + 32 = AD2
16 + 9 = AD2
25 = AD2 => AD = 5 cm.
d, Để ADCF là hình vuông thì: AD⊥BC.
Mà: DC = DB = 1/2BC (gt) nên:
AD⊥BC khi và chỉ khi AD là đường trung trực của BC hay:
AB = AC
=> △ABC vuông cân tại A.
Vậy, điều kiện để ADCF là hình vuông là △ABC vuông cân tại A