K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 2 2022

a) -Có: \(\dfrac{DF}{DC}=\dfrac{1}{3}\) mà \(AE+EB=AB\) nên \(\dfrac{CF}{DC}=\dfrac{2}{3}\).

\(AB=DC\)(ABCD là hình thoi) \(\Rightarrow\dfrac{CF}{AB}=\dfrac{2}{3}\)

Mà \(\dfrac{AE}{AB}=\dfrac{2}{3}\) (gt) nên \(AE=CF\).

Mà EB//DF (ABCD là hình thoi) nên \(AECF\) là hình hình bình.

-Tương tự như vậy, EBFD là hình bình hành.

b) -Có: \(\dfrac{AE}{AB}=\dfrac{2}{3}\) mà \(AE+EB=AB\) nên \(\dfrac{EB}{AB}=\dfrac{1}{3}\Rightarrow\dfrac{EB}{AE}=\dfrac{1}{2}\).

-Có: \(\dfrac{DF}{DC}=\dfrac{1}{3}\) mà \(\dfrac{EB}{DC}=\dfrac{1}{3}\left(\dfrac{EB}{AB}=\dfrac{1}{3};AB=CD\right)\)

\(\Rightarrow DF=EB\) nên \(\dfrac{DF}{AE}=\dfrac{1}{2}\).

-Xét △AEH có: DF//AE (ABCD là hình thoi).

\(\Rightarrow\dfrac{DF}{AE}=\dfrac{HD}{HA}=\dfrac{DH}{AH}=\dfrac{1}{2}\) (định lí Ta-let).

c) -Có \(\dfrac{DH}{AH}=\dfrac{1}{2}\) nên D là trung điểm AH.

\(\Rightarrow AD=DH=CD=\dfrac{1}{2}AH\)

-Xét △ACH có:

CD là trung tuyến ứng với cạnh AH (D là trung điểm AH)

Mà \(CD=\dfrac{1}{2}AH\) (cmt)

Nên △ACH vuông tại C.

\(\Rightarrow\) HC vuông góc với AC.

-Gọi G là giao điểm của CD và BH.

-Có \(DH=CD\) (cmt) và \(CD=BC\) (ABCD là hình thoi)

Nên \(DH=BC\) mà DH//BC (ABCD là hình thoi).

\(\Rightarrow\) BDHC là hình bình hành.

-Mà  G là giao điểm của CD và BH nên G là trung điểm CD và BH

\(\Rightarrow GD=\dfrac{1}{2}DC=\dfrac{1}{2}.3DF=\dfrac{3}{2}DF\)

\(\Rightarrow DF=\dfrac{2}{3}GD\).

-Xét △HDB có: 

DG là trung tuyến (G là trung điểm BH).

F thuộc DG.

\(DF=\dfrac{2}{3}GD\) (cmt).

Nên F là trọng tâm của tam giác HDB.

5 tháng 2 2022

1. 

a) Gọi G là giao của BE và DC.

-Xét △BEF và △BCF có:

\(BE=BC\) (gt).

\(\widehat{EBF}=\widehat{CBF}\) (BF là tia phân giác của \(\widehat{EBC}\)).

\(BF\) là cạnh chung.

=>△BEF = △BCF (c-g-c).

=>\(\widehat{BEF}=\widehat{BCF}=90^0\) (2 góc tương ứng).

=>BG⊥FI tại E.

-Ta có: \(\widehat{GED}+\widehat{EGD}=90^0\) (△DEG vuông tại D).

\(\widehat{EGD}+\widehat{EFD}=90^0\) (△GEF vuông tại E).

=>\(\widehat{GED}=\widehat{EFD}\).

-Xét △GED và △EFD có:

\(\widehat{GED}=\widehat{EFD}\) (cmt)

\(\widehat{GDE}=\widehat{FED}=90^0\)

=>△GED ∼ △EFD (g-g),

=>\(\dfrac{GD}{GE}=\dfrac{ED}{EF}\) (2 tỉ lệ tương ứng) (1).

-Xét △ABE có: AB//GD (ABCD là hình chữ nhật).

=>\(\dfrac{AB}{GD}=\dfrac{BE}{GE}\) (định lí Ta-let).

=>\(\dfrac{AB}{BE}=\dfrac{GD}{GE}\) (2)

-Xét △AEI có: AI//DF (ABCD là hình chữ nhật).

=>\(\dfrac{AE}{DE}=\dfrac{EI}{EF}\) (định lí Ta-let).

=>\(\dfrac{AE}{EI}=\dfrac{DE}{EF}\) (3).

-Từ (1),(2),(3) suy ra: \(\dfrac{AB}{BE}=\dfrac{AE}{EI}\)

=>\(AB.EI=BE.AE\) mà \(BE=BC\) (gt)

=>\(AB.EI=BC.AE\).

b) -Xét △ABE và △EBI có:

\(\widehat{BAE}=\widehat{BEI}=90^0\)

\(\widehat{B}\) là góc chung.

=>△ABE ∼ △EBI (g-g).

=>\(\dfrac{AE}{BE}=\dfrac{EI}{BI}\) (2 tỉ lệ tương ứng).

=>\(AE=\dfrac{EI.BE}{BI}\)

=>\(AE^2=\dfrac{EI^2.BE^2}{BI^2}\)

=>\(\dfrac{1}{AE^2}=\dfrac{BI^2}{EI^2.BE^2}\)

Mà \(BI^2=EI^2+BE^2\) (△BEI vuông tại E).

=>\(\dfrac{1}{AE^2}=\dfrac{EI^2+BE^2}{EI^2.BE^2}=\dfrac{1}{BE^2}+\dfrac{1}{EI^2}\)

 

 

6 tháng 2 2022

2)

a) -Ta có: \(\widehat{BMD}+\widehat{DME}+\widehat{CME}=180^0\)

\(\widehat{DBM}+\widehat{DMB}+\widehat{BDM}=180^0\) (tổng 3 góc trong △BDM).

\(\widehat{DME}=\widehat{DBM}\left(gt\right)\)

\(\Rightarrow\widehat{CME}=\widehat{BDM}\).

-Xét △BDM và △CME có:

\(\widehat{BDM}=\widehat{CME}\) (cmt).

\(\widehat{DBM}=\widehat{MCE}\) (△ABC cân tại A).

\(\Rightarrow\)△BDM ∼ △CME (g-g).

\(\Rightarrow\dfrac{BD}{BM}=\dfrac{CM}{CE}\) (2 tỉ lệ tương ứng).

Mà \(BM=CM=\dfrac{1}{2}BC\) (M là trung điểm BC).

\(\Rightarrow\dfrac{BD}{\dfrac{1}{2}BC}=\dfrac{\dfrac{1}{2}BC}{CE}\)

\(\Rightarrow BD.CE=\dfrac{1}{4}BC^2\).

b) -Ta có: \(\dfrac{BD}{CM}=\dfrac{DM}{ME}\) (△BDM ∼ △CME)

Mà  \(BM=CM\) (M là trung điểm BC).

\(\Rightarrow\dfrac{BD}{BM}=\dfrac{DM}{ME}\)

-Xét △BDM và △MDE có:

\(\widehat{DBM}=\widehat{DME}\left(gt\right)\)

\(\dfrac{BD}{BM}=\dfrac{DM}{ME}\) (cmt).

\(\Rightarrow\)△BDM ∼ △MDE (c-g-c).

\(\Rightarrow\widehat{BDM}=\widehat{MDE}\) (2 góc tương ứng) hay DM là phân giác của \(\widehat{BDE}\).

 

 

21 tháng 10 2021

1) Vì ABCD là hình bình hành nên AB//CD hay AE//CF

Xét tứ giác AECF có AE//CF, AE=CF

=> AECF là hình bình hành

2) Vì AbCDlà hình bình hành nên O là trung điểm của AC (1)

Mà AECF là hình bình hành có 2 đường chéo AC và EF cắt nhau tại O (2)

Suy ra O là trung điểm của EF

Bài 1: Cho tam giác ABC .Trên tia AC lấy điểm M sao cho AM = AB. Trên tia AB lấy điểm N sao cho AN = AC. Chứng minh tứ giác BMCN là hình thangBài 2: Cho tam giác ABC vuông tại A. Lấy điểm M thuộc cạnh BC sao cho AM= 1/2 BC, N là trung điểm cạnh AB. Chứng minh:a) Tam giác ABC cân ---- b) Tứ giác MNAC là hình thang vuông Bài 3: Cho hình thang cân ABCD ( AB // CD ) ---- a) Chứng minh góc ACD = góc BCD ---- b) Gọi E là giao điểm của...
Đọc tiếp

Bài 1: Cho tam giác ABC .Trên tia AC lấy điểm M sao cho AM = AB. Trên tia AB lấy điểm N sao cho AN = AC. Chứng minh tứ giác BMCN là hình thang

Bài 2: Cho tam giác ABC vuông tại A. Lấy điểm M thuộc cạnh BC sao cho AM= 1/2 BC, N là trung điểm cạnh AB. Chứng minh:

a) Tam giác ABC cân ---- b) Tứ giác MNAC là hình thang vuông 

Bài 3: Cho hình thang cân ABCD ( AB // CD ) ---- a) Chứng minh góc ACD = góc BCD ---- b) Gọi E là giao điểm của AC và BD. C/minh EA = EB

Bài 4: Cho ABCD là hình thang ( AB // CD, AB < CD ). Kẻ các đường cao AE,BF của hình thang. C/minh rằng DE = CF 

Bài 5: Cho ABCD là hình thang ( AB // CD ) có DB là đường phân giác góc D và AE là đường phân giác góc A ( E thuộc DC ). Biết AE // BC và O là giao điểm của AE với DB. CMR:

a) AE vuông góc với DB

b) AD // BE và AD = BE

c) E là trung điểm của DC 

d) Xác định dạng của tứ giác BCEO

e) Biết góc BEC = 80 độ. Hãy tính các góc của hình thang ABCD 

1

Bài 4:

Xét ΔAED vuông tại E và ΔBFC vuông tại F có

AD=BC

góc D=góc C

Do đó: ΔAED=ΔBFC

=>DE=CF
Bài 3:

a: Xét ΔADC và ΔBCD có

AD=BC

AC=BD

DC chung

Do đó: ΔADC=ΔBCD

=>góc ACD=góc BDC

b: Ta co: góc ACD=góc BDC

=>góc EAB=góc EBA
=>ΔEAB cân tại E

16 tháng 11 2021

Vì AE=CF và AE//CF (AB//CD do hbh ABCD) nên AECF là hbh

\(\left\{{}\begin{matrix}AE=CF\\AM=CN\\\widehat{A}=\widehat{C}\left(hbh.ABCD\right)\end{matrix}\right.\Rightarrow\Delta AME=\Delta CNF\left(c.g.c\right)\\ \Rightarrow ME=NF\left(4\right)\\ \left\{{}\begin{matrix}AE=CF\\AB=CD\end{matrix}\right.\Rightarrow AB-AE=CD-CF\Rightarrow BE=DF\left(1\right)\\ \left\{{}\begin{matrix}AM=CN\\AD=BC\end{matrix}\right.\Rightarrow AD-AM=CN-BC\Rightarrow DM=BN\left(2\right)\)

ABCD là hbh nên \(\widehat{B}=\widehat{D}\left(3\right)\)

\(\left(1\right)\left(2\right)\left(3\right)\Rightarrow\Delta DMN=\Delta BFE\left(c.g.c\right)\\ \Rightarrow MN=EF\left(5\right)\)

(4)(5) suy ra MENF là hbh

 

28 tháng 10 2017

a.Xét  ΔAME và  ΔCNF có
AM=CN(gt)
Góc MAE= góc NCF
AE=CF(gt)
Do đó ΔAME =  ΔCNF (c.g.c)
=> ME=NF(2 cạnh tương ứng)
Tương tự  ΔDMF=  ΔBNE(c.g.c)
=>MF=NE(2 cạnh tương ứng)
Tứ giác EMFN có
ME=NF(gt)
MF=NE(gt)
=>EMFN là hình bình hành

b) b/ Ta có: OE=OF (MENF là hình bình hành)
ON=OM(MENF là hình bình hành)
OD=OB (ABCD là hình bình hành)
OA=OC(ABCDlà hình bình hành)
=>AC, BD, MN, E giao nhau tại O
hay AC, BD, MN, EF đồng quy

cn lại bó tay