Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.
a) Gọi G là giao của BE và DC.
-Xét △BEF và △BCF có:
\(BE=BC\) (gt).
\(\widehat{EBF}=\widehat{CBF}\) (BF là tia phân giác của \(\widehat{EBC}\)).
\(BF\) là cạnh chung.
=>△BEF = △BCF (c-g-c).
=>\(\widehat{BEF}=\widehat{BCF}=90^0\) (2 góc tương ứng).
=>BG⊥FI tại E.
-Ta có: \(\widehat{GED}+\widehat{EGD}=90^0\) (△DEG vuông tại D).
\(\widehat{EGD}+\widehat{EFD}=90^0\) (△GEF vuông tại E).
=>\(\widehat{GED}=\widehat{EFD}\).
-Xét △GED và △EFD có:
\(\widehat{GED}=\widehat{EFD}\) (cmt)
\(\widehat{GDE}=\widehat{FED}=90^0\)
=>△GED ∼ △EFD (g-g),
=>\(\dfrac{GD}{GE}=\dfrac{ED}{EF}\) (2 tỉ lệ tương ứng) (1).
-Xét △ABE có: AB//GD (ABCD là hình chữ nhật).
=>\(\dfrac{AB}{GD}=\dfrac{BE}{GE}\) (định lí Ta-let).
=>\(\dfrac{AB}{BE}=\dfrac{GD}{GE}\) (2)
-Xét △AEI có: AI//DF (ABCD là hình chữ nhật).
=>\(\dfrac{AE}{DE}=\dfrac{EI}{EF}\) (định lí Ta-let).
=>\(\dfrac{AE}{EI}=\dfrac{DE}{EF}\) (3).
-Từ (1),(2),(3) suy ra: \(\dfrac{AB}{BE}=\dfrac{AE}{EI}\)
=>\(AB.EI=BE.AE\) mà \(BE=BC\) (gt)
=>\(AB.EI=BC.AE\).
b) -Xét △ABE và △EBI có:
\(\widehat{BAE}=\widehat{BEI}=90^0\)
\(\widehat{B}\) là góc chung.
=>△ABE ∼ △EBI (g-g).
=>\(\dfrac{AE}{BE}=\dfrac{EI}{BI}\) (2 tỉ lệ tương ứng).
=>\(AE=\dfrac{EI.BE}{BI}\)
=>\(AE^2=\dfrac{EI^2.BE^2}{BI^2}\)
=>\(\dfrac{1}{AE^2}=\dfrac{BI^2}{EI^2.BE^2}\)
Mà \(BI^2=EI^2+BE^2\) (△BEI vuông tại E).
=>\(\dfrac{1}{AE^2}=\dfrac{EI^2+BE^2}{EI^2.BE^2}=\dfrac{1}{BE^2}+\dfrac{1}{EI^2}\)
2)
a) -Ta có: \(\widehat{BMD}+\widehat{DME}+\widehat{CME}=180^0\)
\(\widehat{DBM}+\widehat{DMB}+\widehat{BDM}=180^0\) (tổng 3 góc trong △BDM).
Mà\(\widehat{DME}=\widehat{DBM}\left(gt\right)\)
\(\Rightarrow\widehat{CME}=\widehat{BDM}\).
-Xét △BDM và △CME có:
\(\widehat{BDM}=\widehat{CME}\) (cmt).
\(\widehat{DBM}=\widehat{MCE}\) (△ABC cân tại A).
\(\Rightarrow\)△BDM ∼ △CME (g-g).
\(\Rightarrow\dfrac{BD}{BM}=\dfrac{CM}{CE}\) (2 tỉ lệ tương ứng).
Mà \(BM=CM=\dfrac{1}{2}BC\) (M là trung điểm BC).
\(\Rightarrow\dfrac{BD}{\dfrac{1}{2}BC}=\dfrac{\dfrac{1}{2}BC}{CE}\)
\(\Rightarrow BD.CE=\dfrac{1}{4}BC^2\).
b) -Ta có: \(\dfrac{BD}{CM}=\dfrac{DM}{ME}\) (△BDM ∼ △CME)
Mà \(BM=CM\) (M là trung điểm BC).
\(\Rightarrow\dfrac{BD}{BM}=\dfrac{DM}{ME}\)
-Xét △BDM và △MDE có:
\(\widehat{DBM}=\widehat{DME}\left(gt\right)\)
\(\dfrac{BD}{BM}=\dfrac{DM}{ME}\) (cmt).
\(\Rightarrow\)△BDM ∼ △MDE (c-g-c).
\(\Rightarrow\widehat{BDM}=\widehat{MDE}\) (2 góc tương ứng) hay DM là phân giác của \(\widehat{BDE}\).
1) Vì ABCD là hình bình hành nên AB//CD hay AE//CF
Xét tứ giác AECF có AE//CF, AE=CF
=> AECF là hình bình hành
2) Vì AbCDlà hình bình hành nên O là trung điểm của AC (1)
Mà AECF là hình bình hành có 2 đường chéo AC và EF cắt nhau tại O (2)
Suy ra O là trung điểm của EF
Bài 4:
Xét ΔAED vuông tại E và ΔBFC vuông tại F có
AD=BC
góc D=góc C
Do đó: ΔAED=ΔBFC
=>DE=CF
Bài 3:
a: Xét ΔADC và ΔBCD có
AD=BC
AC=BD
DC chung
Do đó: ΔADC=ΔBCD
=>góc ACD=góc BDC
b: Ta co: góc ACD=góc BDC
=>góc EAB=góc EBA
=>ΔEAB cân tại E
Vì AE=CF và AE//CF (AB//CD do hbh ABCD) nên AECF là hbh
\(\left\{{}\begin{matrix}AE=CF\\AM=CN\\\widehat{A}=\widehat{C}\left(hbh.ABCD\right)\end{matrix}\right.\Rightarrow\Delta AME=\Delta CNF\left(c.g.c\right)\\ \Rightarrow ME=NF\left(4\right)\\ \left\{{}\begin{matrix}AE=CF\\AB=CD\end{matrix}\right.\Rightarrow AB-AE=CD-CF\Rightarrow BE=DF\left(1\right)\\ \left\{{}\begin{matrix}AM=CN\\AD=BC\end{matrix}\right.\Rightarrow AD-AM=CN-BC\Rightarrow DM=BN\left(2\right)\)
ABCD là hbh nên \(\widehat{B}=\widehat{D}\left(3\right)\)
\(\left(1\right)\left(2\right)\left(3\right)\Rightarrow\Delta DMN=\Delta BFE\left(c.g.c\right)\\ \Rightarrow MN=EF\left(5\right)\)
(4)(5) suy ra MENF là hbh
a.Xét ΔAME và ΔCNF có
AM=CN(gt)
Góc MAE= góc NCF
AE=CF(gt)
Do đó ΔAME = ΔCNF (c.g.c)
=> ME=NF(2 cạnh tương ứng)
Tương tự ΔDMF= ΔBNE(c.g.c)
=>MF=NE(2 cạnh tương ứng)
Tứ giác EMFN có
ME=NF(gt)
MF=NE(gt)
=>EMFN là hình bình hành
b) b/ Ta có: OE=OF (MENF là hình bình hành)
ON=OM(MENF là hình bình hành)
OD=OB (ABCD là hình bình hành)
OA=OC(ABCDlà hình bình hành)
=>AC, BD, MN, E giao nhau tại O
hay AC, BD, MN, EF đồng quy
cn lại bó tay
a) -Có: \(\dfrac{DF}{DC}=\dfrac{1}{3}\) mà \(AE+EB=AB\) nên \(\dfrac{CF}{DC}=\dfrac{2}{3}\).
\(AB=DC\)(ABCD là hình thoi) \(\Rightarrow\dfrac{CF}{AB}=\dfrac{2}{3}\)
Mà \(\dfrac{AE}{AB}=\dfrac{2}{3}\) (gt) nên \(AE=CF\).
Mà EB//DF (ABCD là hình thoi) nên \(AECF\) là hình hình bình.
-Tương tự như vậy, EBFD là hình bình hành.
b) -Có: \(\dfrac{AE}{AB}=\dfrac{2}{3}\) mà \(AE+EB=AB\) nên \(\dfrac{EB}{AB}=\dfrac{1}{3}\Rightarrow\dfrac{EB}{AE}=\dfrac{1}{2}\).
-Có: \(\dfrac{DF}{DC}=\dfrac{1}{3}\) mà \(\dfrac{EB}{DC}=\dfrac{1}{3}\left(\dfrac{EB}{AB}=\dfrac{1}{3};AB=CD\right)\)
\(\Rightarrow DF=EB\) nên \(\dfrac{DF}{AE}=\dfrac{1}{2}\).
-Xét △AEH có: DF//AE (ABCD là hình thoi).
\(\Rightarrow\dfrac{DF}{AE}=\dfrac{HD}{HA}=\dfrac{DH}{AH}=\dfrac{1}{2}\) (định lí Ta-let).
c) -Có \(\dfrac{DH}{AH}=\dfrac{1}{2}\) nên D là trung điểm AH.
\(\Rightarrow AD=DH=CD=\dfrac{1}{2}AH\)
-Xét △ACH có:
CD là trung tuyến ứng với cạnh AH (D là trung điểm AH)
Mà \(CD=\dfrac{1}{2}AH\) (cmt)
Nên △ACH vuông tại C.
\(\Rightarrow\) HC vuông góc với AC.
-Gọi G là giao điểm của CD và BH.
-Có \(DH=CD\) (cmt) và \(CD=BC\) (ABCD là hình thoi)
Nên \(DH=BC\) mà DH//BC (ABCD là hình thoi).
\(\Rightarrow\) BDHC là hình bình hành.
-Mà G là giao điểm của CD và BH nên G là trung điểm CD và BH
\(\Rightarrow GD=\dfrac{1}{2}DC=\dfrac{1}{2}.3DF=\dfrac{3}{2}DF\)
\(\Rightarrow DF=\dfrac{2}{3}GD\).
-Xét △HDB có:
DG là trung tuyến (G là trung điểm BH).
F thuộc DG.
\(DF=\dfrac{2}{3}GD\) (cmt).
Nên F là trọng tâm của tam giác HDB.