Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
Không có khái niệm đường trung bình của đoạn thẳng nha bạn.
Nếu mình đoán không nhầm thì đề đúng là ''đường trung trực''
![](https://rs.olm.vn/images/avt/0.png?1311)
a, chứng minh EFGH là hình bình hành do có EF//HG (cùng song2 với AC) và HE//GF(cùng song2 BD)
mà có EG=HF=> EFGH là hình thoi (*)
ta có BD//HE=> góc HEF vuông (**)
từ (*)(**) => EFGH là hình vuông ( hình thoi có 1 góc vuông )
A B C D E F G H M
a) Dễ dàng chứng minh được \(\Delta AEH=\Delta BFE=\Delta CGF=\Delta DHG\)
\(\Rightarrow EH=EF=FG=HG\)
=>EFGH là hình thoi
\(\Delta AEH\)vuông cân tại A =>\(\widehat{AEH}=45^0\)
\(\Delta BEF\)vuông cân tại B=>\(\widehat{BEF}=45^0\)
=>\(\widehat{HEF}=90^0\)
=> EFGH là hình vuông
b) Ta chứng minh được : \(\Delta EBC=\Delta FCD\left(cgv.cgv\right)\)
\(\Rightarrow\widehat{BCE}=\widehat{CDF}\)
\(\Rightarrow\widehat{BCE}+\widehat{MCD}=\widehat{CDF}+\widehat{MCD}\)
\(\Rightarrow90^0=\widehat{MCD}+\widehat{CDM}\)
\(\Rightarrow180^0-\widehat{MCD}-\widehat{CDM}=\widehat{DMC}\)
\(\Rightarrow\widehat{DMC}=90^0hayDF\perp CE\)
gọi N là giao điểm của AG và DF
cm tương tự \(DF\perp CE\)ta được AG\(\perp\)DF
=>GN//CM mà G là trung điểm của DC =>N là trung điểm của DM
\(\Delta\)ADM có AN vừa là đường cao vừa là đường phân giác =>\(\Delta ADM\)cân tại A
c)ta cm \(\Delta DMC~\Delta DCF\left(g.g\right)\Rightarrow\frac{DC}{DF}=\frac{CM}{CF}\)
\(\Rightarrow\frac{S_{DMC}}{S_{DCF}}=\left(\frac{DC}{DF}\right)^2\Rightarrow S_{DMC}=\left(\frac{DC}{DF}\right)^2\cdot S_{DCF}\)
Mà \(S_{DCF}=\frac{1}{2}DF\cdot DC=\frac{1}{4}DC^2\)
Vậy \(S_{DMC}=\frac{DC^2}{DF^2}\cdot\frac{1}{4}DC^2\)
Trong tam giác DCF theo định lý py ta go có:
\(DF^2=CD^2+CF^2=CD^2+\left(\frac{1}{2}AB\right)^2=CD^2+\frac{1}{4}CD^2=\frac{5}{4}CD^2\)
Do đó \(S_{DMC}=\frac{CD^2}{\frac{5}{4}CD^2}\cdot\frac{1}{4}CD^2=\frac{1}{5}CD^2=\frac{1}{5}a^2\)
![](https://rs.olm.vn/images/avt/0.png?1311)
+ E là trung điểm AB, F là trung điểm BC
⇒ EF là đường trung bình của tam giác ABC
⇒ EF // AC và EF = AC/2
+ H là trung điểm AD, G là trung điểm CD
⇒ HG là đường trung bình của tam giác ACD
⇒ HG // AC và HG = AC/2.
+ Ta có:
EF //AC, HG//AC ⇒ EF // HG.
EF = AC/2; HG = AC/2 ⇒ EF = HG
⇒ tứ giác EFGH là hình bình hành.
a: Xét ΔABC có
E là trung điểm của AB
F là trung điểm của BC
Do đó: EF là đường trung bình
=>EF//AC và EF=AC/2(1)
Xét ΔCDA có
G là trung điểm của CD
H là trung điểm của DA
Do đó: GH là đường trung bình
=>GH//AC và GH=AC/2(2)
Từ (1) và (2) suy ra EF//GH và EF=GH
hay EFGH là hình bình hành(3)
Xét ΔABD có
E là trung điểm của AB
H là trung điểm của DA
Do đó: EH là đường trung bình
=>EH//BD
=>EH⊥AC
=>EH⊥EF(4)
Từ (3) và (4) suy ra EFGH là hình chữ nhật
b: \(S_{ABCD}=\dfrac{AC\cdot BD}{2}\)
c: \(S_{EFGH}=EF\cdot EH\)