Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
( hình tự vẽ)
a) xét tam giác AMO và tam giác AQO:
AO: cạnh chung
DAO = BAO
=> tam giác AQO= tam giác AMO ( ch-gn)
=> OM = OQ(1)
cm tương tự, xét tam giác MOB và tam giác NOB, tam giác QOD và tam giác POD.
=> OM=ON=OP=OQ
b) Ta có : OM vuông góc BA
OP vuông góc DC
Mà : AB//DC (ABCD là hình thoi )
=> M,O,P thẳng hàng
có thể cm rằng AMCP là hình bình hành cũng được
c) Ta có OM=ON=OP=OQ
M,O,P thẳng hàng (cmt)
Q,O,N thẳng hàng ( tự cm như cách trên )
=> MNPQ là hình chữ nhật
d) Ta có AQ=AM ( tam giác AQO=tam giác AMO)
Mà QAM =90* ( ABCD laqf hình vuông)
=> AQM =45*
AQM +OQM = 90*
=>OQM = 45*
Mà OQ=OM (cmt)
=> QOM = 90*
Mà MNPQ là hcn
=> MNPQ là hình vuông
Nhà hàng Tôm hùm kính chào quý khách ĐC : 255 Nguyễn Huệ, Q tân bình , TP HCM nhà hàng của gđ mik rất mong dc đón các bn
a: Xét ΔABD có
M là trung điểm của AB
Q là trung điểm của AD
Do đó: MQ là đường trung bình của ΔABD
Suy ra: MQ//BD và \(MQ=\dfrac{BD}{2}\left(1\right)\)
Xét ΔBCD có
N là trung điểm của BC
P là trung điểm của CD
Do đó: NP là đường trung bình của ΔBCD
Suy ra: NP//BD và \(NP=\dfrac{BD}{2}\left(2\right)\)
Từ (1) và (2) suy ra MQ//NP và MQ=NP
Xét ΔABC có
M là trung điểm của AB
N là trung điểm của BC
Do đó: MN là đường trung bình của ΔABC
Suy ra: MN//AC
mà AC\(\perp\)BD
nên MN\(\perp\)BD
hay MN\(\perp\)MQ
Xét tứ giác MQPN có
MQ//NP
MQ=NP
Do đó: MQPN là hình bình hành
mà \(\widehat{QMN}=90^0\)
nên MQPN là hình chữ nhật
cho tứ giác ABCD. Gọi M,N,P,Q lần lượt là tđ của AB,BC,CD,DA.
a) tứ giác MNPQ là hình gì ? vì sao?
MN//BD; PQ//BD
NP//AC; QM//AC
=>MN//PQNP//QNMNPQ la hbbh