K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 12 2017

( hình tự vẽ)

a) xét tam giác AMO và tam giác AQO:

AO: cạnh chung

DAO = BAO

=> tam giác AQO= tam giác AMO ( ch-gn)

=> OM = OQ(1)

cm tương tự, xét tam giác MOB và tam giác NOB, tam giác QOD và tam giác POD.

=> OM=ON=OP=OQ

b) Ta có : OM vuông góc BA

OP vuông góc DC

Mà : AB//DC (ABCD là hình thoi )

=> M,O,P thẳng hàng

có thể cm rằng AMCP là hình bình hành cũng được

c) Ta có OM=ON=OP=OQ

M,O,P thẳng hàng (cmt)

Q,O,N thẳng hàng ( tự cm như cách trên )

=> MNPQ là hình chữ nhật

d) Ta có AQ=AM ( tam giác AQO=tam giác AMO)

Mà QAM =90* ( ABCD laqf hình vuông)

=> AQM =45*

AQM +OQM = 90*

=>OQM = 45*

Mà OQ=OM (cmt)

=> QOM = 90*

Mà MNPQ là hcn

=> MNPQ là hình vuông

27 tháng 12 2017

bạn có hình vẽ không

22 tháng 4 2020

Nhà hàng Tôm hùm kính chào quý khách ĐC : 255 Nguyễn Huệ, Q tân bình , TP HCM nhà hàng của gđ mik rất mong dc đón các bn

22 tháng 4 2020

O A B C D M Q N P

25 tháng 10 2021

a: Xét ΔABD có

M là trung điểm của AB

Q là trung điểm của AD

Do đó: MQ là đường trung bình của ΔABD

Suy ra: MQ//BD và \(MQ=\dfrac{BD}{2}\left(1\right)\)

Xét ΔBCD có 

N là trung điểm của BC

P là trung điểm của CD

Do đó: NP là đường trung bình của ΔBCD

Suy ra: NP//BD và \(NP=\dfrac{BD}{2}\left(2\right)\)

Từ (1) và (2) suy ra MQ//NP và MQ=NP

Xét ΔABC có 

M là trung điểm của AB

N là trung điểm của BC

Do đó: MN là đường trung bình của ΔABC

Suy ra: MN//AC

mà AC\(\perp\)BD

nên MN\(\perp\)BD

hay MN\(\perp\)MQ

Xét tứ giác MQPN có

MQ//NP

MQ=NP

Do đó: MQPN là hình bình hành

mà \(\widehat{QMN}=90^0\)

nên MQPN là hình chữ nhật

cho tứ giác ABCD. Gọi M,N,P,Q lần lượt là tđ của AB,BC,CD,DA.

a) tứ giác MNPQ là hình gì ? vì sao?

MN//BD; PQ//BD

NP//AC; QM//AC

=>MN//PQNP//QNMNPQ la hbbh