Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\widehat{BAD}=60^0\Rightarrow BD=a\) ; \(AC=2OA=2.\frac{a\sqrt{3}}{2}=a\sqrt{3}\)
\(\left|\overrightarrow{AB}+\overrightarrow{AD}\right|=\left|\overrightarrow{AB}+\overrightarrow{BC}\right|=\left|\overrightarrow{AC}\right|=a\sqrt{3}\)
\(\left|\overrightarrow{BA}-\overrightarrow{BC}\right|=\left|\overrightarrow{BA}+\overrightarrow{CB}\right|=\left|\overrightarrow{CA}\right|=a\sqrt{3}\)
Gọi H là chân đường cao hạ từ A xuống BC \(\Rightarrow\Delta ABH\) vuông cân tại H (do \(\widehat{B}=45^0\))
\(\Rightarrow BH=AH=2a\Rightarrow HC=BH+AD=4a\)
\(\Rightarrow AC=\sqrt{AH^2+HC^2}=2a\sqrt{5}\)
Vậy:
\(\left|\overrightarrow{CB}-\overrightarrow{AD}+\overrightarrow{AC}\right|=\left|\overrightarrow{CB}+\overrightarrow{DA}+\overrightarrow{AC}\right|=\left|\overrightarrow{CB}+\overrightarrow{DC}\right|=\left|\overrightarrow{DB}\right|=AC=2a\sqrt{5}\)