K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 4 2020

Từ B vẽ BH là đường trung trực của DC ( H∈DC )

Ta có góc ADC = góc BHC = 90°

=> ABHD là hình thang cân

=> AD=BH=AB=Dh=4(cm) và DH=HC=4(cm)( do BH là đường trung trực)

<=> ΔBHC là Δ vuông cân góc BCH= góc HBC=40°

Từ đó góc ABH + góc HBC = góc ABC = 90°+45°=135°

Vậy góc A= góc D = 90° (gt), góc ABC =135° và góc BCD=45°

25 tháng 7 2019

 hình thang ABCD 

=> AD=BC = 3cm ( định lí 1 )

AB//CD ( ABCD là hình thang cân )

=> góc B1 = góc D2 ( SLT )

     góc D1 = góc D2 ( gt )

=> góc B1 = góc D1 

=> tg ABD cân tại A

=> AD=AB= 3cm

tg DBC vuông ở B

hình thang cân ABCD 

=> góc D = góc C

   2 lần góc D1  = góc C

=> góc DBC = góc D1 + 2 lần góc D1 = 90 độ

                                       3 lần góc D1 = 90 độ

=>                                            góc D1 = 900 : 3 

                                                             = 300

=> góc C = 900 - góc D1 = 900 - 300 = 600

Gọi DA giao CB tại O

tg ODC có DB là pgiác 

BD vuông góc với Oc

=> tg ODC cân ở D

lại có góc C = 60 độ

=> tg OCD đều

=> CD = CO

mà tg ODC đều nên DB là đường phân giác đồng thời là đường trung tuyến

=> OB= BC

     CD= CO = OB+BC

mà OB = BC ( cmt )

=> CĐ= CƠ = 2CB = 2.3 = 6 ( cm )

Chu vi của hình thang cân ABCD là

AB+BC+AD+CD = 3+3+3+6= 15 (cm )

25 tháng 7 2019

Bạn ơi vẽ hình hộ mk đc ko ạ ?

25 tháng 8 2021

a) Vẽ CH⊥ABCH⊥AB

Tứ giác ABCHABCH có 3 góc vuông

⇒⇒ Tứ giác ABCHABCH là hình chữ nhật

Lại có AB=BC(gt)AB=BC(gt)

⇒⇒ Tứ giác ABCHABCH là hình vuông

⇒ˆBCH=90o⇒BCH^=90o

⇒BC=AH=CH⇒BC=AH=CH

Ta có:

BC=12AD(gt)BC=12AD(gt)

⇒AD=2⋅BC⇒AD=2⋅BC

AD=AH+HDAD=AH+HD

AD=BC+HDAD=BC+HD

2⋅BC=BC+HD2⋅BC=BC+HD

⇒HD=BC⇒HD=BC

Ta có CH=BCCH=BC và HD=BCHD=BC nên CH=HDCH=HD

Xét ΔCHDΔCHD có:

CH=HDCH=HD

ˆCHD=90oCHD^=90o(kề bù với ˆCHACHA^)

⇒ΔCHD⇒ΔCHD vuông cân tại HH

⇒ˆHCD=ˆD=45o⇒HCD^=D^=45o

ˆBDC=ˆBCH+ˆHCD=90o+45o=135oBDC^=BCH^+HCD^=90o+45o=135o

Vậy ˆA=90o,ˆB=90o,ˆC=135o,ˆD=45oA^=90o,B^=90o,C^=135o,D^=45o

b)

Xét ΔCHAΔCHA có:

CH=HACH=HA

ˆCHD=90oCHD^=90o

⇒ΔCHA⇒ΔCHA vuông cân tại HH

⇒ˆHCA=ˆA=45o⇒HCA^=A^=45o

ˆACD=ˆACH+ˆHCD=45o+45o=90oACD^=ACH^+HCD^=45o+45o=90o

⇒AC⊥CD⇒AC⊥CD

Vậy AC⊥CDAC⊥CD

c)

BC=AB=3cm(gt)BC=AB=3cm(gt)

AD=2⋅BC=2⋅3cm=6cmAD=2⋅BC=2⋅3cm=6cm

HD=BC=3cmHD=BC=3cm

Xét ΔCHDΔCHD:

Áp dụng định lý Pi-ta-go ta có:

HD2+BC2=CD232+32=CD2CD2=18CD=√18(cm)HD2+BC2=CD232+32=CD2CD2=18CD=18(cm)

Chu vi hình thang là:

3+3+√18+6=12+√18(cm)

tick mình nha

25 tháng 12 2017

M N P Q A F E 1 1 1 1 2 3 1 2 3 1 2 1 2 2 3

MEAF là HCN vì M1=F1=E1=90 độ

b.QMN cân tại M ( -> Góc FQA=Góc N1)

Có  QFA=AEN=90 ĐỘ

-> T/G QFA đồng dạng vs NEA ->  A3=N1=FQA-> T/G QFA vuông cân tại F ->  FQ=FA=ME

-Xét 2 tam giác PQF=QME(C.G.C)

-> QE=PF( 2 cạnh tương ứng ) -> P1=Q1 ( góc tương ưng )

 có F3+P1=90 ĐỘ ( tam giác vuông ) mà P1=Q1 ->  F3+Q1=90 ĐỘ -> QE vuông góc vs PF

c.Có FA+AE=ME+EN=MN( không đổi =>FA.AE lớn nhất khi FA=AE => MEAF là hình vuông khi A trùng vs giao điểm 2 đường chéo của hình vuông MNPQ 

Diện tích hình vuông MEAF là FA.AE