Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Từ B vẽ BH là đường trung trực của DC ( H∈DC )
Ta có góc ADC = góc BHC = 90°
=> ABHD là hình thang cân
=> AD=BH=AB=Dh=4(cm) và DH=HC=4(cm)( do BH là đường trung trực)
<=> ΔBHC là Δ vuông cân góc BCH= góc HBC=40°
Từ đó góc ABH + góc HBC = góc ABC = 90°+45°=135°
Vậy góc A= góc D = 90° (gt), góc ABC =135° và góc BCD=45°
Cho hình thang MNPQ có góc P > 90 độ > góc Q và góc N = 2 lần góc M.
a) Xác định các đáy của hình thang MNPQ.
b) Nếu cho thêm MN = NP = MQ:2 = a. C/m MNPQ là hình thang cân. Gọi O là giao điểm của MP & NQ. Tính góc MOQ.
a: Xét tứ giác ABQM có
AM//QB
AM=QB
DO đó: ABQM là hình bình hành
mà MA=MQ
nên ABQM là hình thoi
b: Xét tứ giác ANBQ có
AN//BQ
AN=BQ
Do đó: ANBQ là hình bình hành
Suy ra: AQ//BN
c: Xét tứ giác ANPB có
AN//BP
AN=BP
Do đó: ANPB là hình bình hành
mà NA=NP
nên ANPB là hình thoi
Xét ΔQPA có
AB là đường trung tuyến
AB=QP/2
Do đó:ΔQPA vuông tại A
hay \(\widehat{QAP}=90^0\)