Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔBAD vuông tại A và ΔADC vuông tại D có
BA/AD=AD/DC
=>ΔBAD đồng dạng với ΔADC
b: ΔBAD đồng dạng với ΔADC
=>góc BDA=góc ACD
Xét ΔOAD và ΔDAC có
góc ODA=góc DCA
góc A chung
=>ΔOAD đồng dạng với ΔDAC
=>góc AOD=góc ADC=90 độ
=>AC vuông góc BD tại O
c: Xét ΔOAB và ΔOCD có
góc OAB=góc OCD
góc AOB=góc COD
=>ΔOAB đồng dạng với ΔOCD
=>S OAB/S OCD=(AB/CD)^2=(4/9)^2=16/81
1) coi lại đề
2) a) tam giác ABD và tam giác ABC có
góc A=góc A, góc ABD=góc ACB
=> tam giác ABD đồng dạng tam giác ACB (g-g)
b) ta có tam giác ABD đồng dạng tam giác ACB=> AB/AC=AD/AB=> 6/9=AD/6=> AD=(6.6):9=4
a) Ta có: \(\frac{4}{6}=\frac{6}{9}\left(=\frac{2}{3}\right)\)
hay \(\frac{AB}{AD}=\frac{AD}{DC}\)
Xét \(\Delta BAD\) và \(\Delta ADC\)có:
\(\widehat{BAD}=\widehat{ADC}=90^0\)
\(\frac{AB}{AD}=\frac{AD}{DC}\)
suy ra: \(\Delta BAD~\Delta ADC\)(c.g.c)
b) \(\Delta BAD~\Delta ADC\)
\(\Rightarrow\) \(\widehat{ABD}=\widehat{DAC}\)
mà \(\widehat{ABD}+\widehat{ADB}=90^0\)
\(\Rightarrow\)\(\widehat{DAC}+\widehat{ADB}=90^0\)
\(\Rightarrow\)\(AC\)\(\perp\)\(BD\)
c) Xét \(\Delta AOB\)và \(\Delta COD\)có:
\(\widehat{OAB}=\widehat{OCD}\) (slt)
\(\widehat{OBA}=\widehat{ODC}\) (slt)
suy ra: \(\Delta AOB~\Delta COD\) (g.g)
\(\Rightarrow\)\(\frac{S_{AOB}}{S_{COD}}=\left(\frac{AB}{CD}\right)^2=\left(\frac{4}{9}\right)^2=\frac{16}{81}\)
tại sao diện tích tam giác aob/diện tích tam giác cod bằng (ab/cd)^2 giải thích hộ với
Bài 1:
a.
AB // CD
=> A + D = 1800 (2 góc trong cùng phía)
=> A = 1800 - D = 1800 - 540 = 1260
AB // CD
=> B + C = 1800 (2 góc trong cùng phía)
=> B = 1800 - C = 1800 - 1050 = 750
b.
AB // CD
=> A + D = 1800 (2 góc trong cùng phía)
=> A = (1800 - 320) : 2 = 740
=> D = 1800 - 740 = 1060
AB // CD
=> B + C = 1800 (2 góc trong cùng phía)
=> B = 1800 : (1 + 2) . 2 = 1200
=> C = 1800 - 1200 = 600
Bài 2:
a: Xét ΔABE và ΔACF có
góc ABE=góc ACF
AB=AC
góc A chung
Do đó: ΔABE=ΔACF
Suy ra: AE=AF
b: Xét ΔABC có AF/AB=AE/AC
nên FE//BC
=>BFEC là hình thang
mà CF=BE
nên BFEC là hình thang cân
c: Xét ΔFEB có góc FEB=góc FBE
nên ΔFEB cân tại F
=>FE=FB=EC
, Tự vẽ hình và ghi giả thiết kết luận (mình không biết vẽ hình trên máy -_-")
Giải : Từ giả thiết ta có
D là trung điểm của AB và MO
,E là trung điểm của AC và ON
=> ED là đường trung bình của cả hai tam giác ABC và OMN
Áp dụng định lý đường trung bình vào tam giác trên ,ta được
\(\hept{\begin{cases}AD//BC,DE//MN\\DE=\frac{1}{2}BC,DE=\frac{1}{2}MN\end{cases}}\Rightarrow\hept{\begin{cases}MN//BC\\MN=BC\end{cases}}\)
Tứ giác MNCB có hai cạnh đối song song và bằng nhau nên nó là hình bình hành
Từ từ ,hình như mình làm nhầm đề :) Để mình làm lại đã rồi trả lời bn sau nhé!!!!!@@
Lời giải:
a)
Xét tam giác $BAD$ và $ADC$ có:
$\widehat{BAD}=\widehat{ADC}=90^0$
$\frac{AB}{AD}=\frac{4}{6}=\frac{6}{9}=\frac{AD}{DC}$
$\Rightarrow \triangle BAD\sim \triangle ADC$ (c.g.c)
b) Cho $O$ là giao $AC$ và $BD$
Từ tam giác đồng dạng p.a suy ra:
$\widehat{ABD}=\widehat{DAC}$
$\Leftrightarrow \widehat{ABO}=\widehat{DAO}=90^0-\widehat{BAO}$
$\Rightarrow \widehat{ABO}+\widehat{BAO}=90^0$
$\Rightarrow \widehat{AOB}=90^0$
$\Rightarrow AC\perp BD$ (đpcm)
c)
Theo định lý Talet:
$\frac{OA}{OC}=\frac{OB}{OD}=\frac{AB}{CD}=\frac{4}{9}$
$\Rightarrow OA=\frac{4}{9}OC; OB=\frac{4}{9}OD$
\(\frac{S_{AOB}}{S_{COD}}=\frac{OA.OB}{OC.OD}=\frac{\frac{4}{9}OC.\frac{4}{9}OD}{OC.OD}=\frac{16}{81}\)
Bài 1:
a: Xét tứ giác ABCD có góc B+góc D=180 độ
nên ABCD là tứ giác nội tiếp
=>góc BAC=góc BDC và góc DAC=góc DBC
mà góc CBD=góc CDB
nên góc BAC=góc DAC
hay AC là phân giác của góc BAD
b: Ta có: góc BCA=góc BAC
=>góc BCA=góc CAD
=>BC//AD
=>ABCD là hình thang
mà góc B=góc BCD
nên ABCD là hình thang cân