K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 6 2017

A D B C N M

a, Vì M là trung điểm của BC, N là trung điểm của AD .

\(\Rightarrow\) MN là đường trung bình của hình thang ABCD .

\(\Rightarrow MN\)//\(AB\)//\(CD\)

mà theo gt \(\widehat{A}=90^0=>AB\perp AD\)

\(=>MN\perp AD\)

Trong tam giác MAD có :

MN là đường trung trực ( cmt )

MN là đường trung tuyến ( vì N là trung điểm của AD )

\(\Rightarrow\Delta MAD\) cân tại M .

b,

Có \(\Delta MAD\) cân tại M \(->\widehat{MAD}=\widehat{MDA}\)

mà \(\widehat{A}=\widehat{D}\)

\(=>\widehat{A}-\widehat{MAD}=\widehat{D}-\widehat{MDA}\)

\(=>\widehat{MAB}=\widehat{MDC}\left(đpcm\right)\).

9 tháng 9 2017

Bài làm

ADBCNM

a, Vì M là trung điểm của BC, N là trung điểm của AD .

⇒⇒ MN là đường trung bình của hình thang ABCD .

⇒MN⇒MN//ABAB//CDCD

mà theo gt Aˆ=900=>AB⊥ADA^=900=>AB⊥AD

=>MN⊥AD=>MN⊥AD

Trong tam giác MAD có :

MN là đường trung trực ( cmt )

MN là đường trung tuyến ( vì N là trung điểm của AD )

⇒ΔMAD⇒ΔMAD cân tại M .

b,Có ΔMADΔMAD cân tại M −>MADˆ=MDAˆ−>MAD^=MDA^

mà Aˆ=DˆA^=D^

=>Aˆ−MADˆ=Dˆ−MDAˆ=>A^−MAD^=D^−MDA^

=>MABˆ=MDCˆ(đpcm)=>MAB^=MDC^(đpcm).

18 tháng 7 2018

A B C D M N

\(a,\) Xét hình thang \(ABCD\) có M là trung đ' BC (gt)

                                                          N là trung đ' AD (gt)

=> MN là đg trung bình của hình thang ABCD

=> MN // AB => MN \(\perp\)AD

Xét \(\Delta AMD\)có: MN là trung đ' đồng thời là đcao

=> \(\Delta AMD\) cân tại A (đpcm)

b,Vì \(\Delta AMD\) cân tại A => \(\widehat{NAM}=\widehat{NDM}\)

mà \(\widehat{MAB}=90^O-\widehat{NAM}\)

      \(\widehat{MDC}=90^O-\widehat{NDM}\)

\(\widehat{\Rightarrow MAB}=\widehat{MDC}\) (đpcm)

8 tháng 7 2017

a/

có M là trung điểm BC

     N là trung điểm AD 

=> MN//AB//DC ( Tính chất đường trung bình)

=> MN vuông AD

Xét tam giác MAD có

MN vừa là đường trung tuyến ( N là trung điểm AD) vùa là đường trung trực ( N là trung điểm AD và MN vuông AD)

=>tam giác MAD cân tại M

b/

Ta có  tam giác MAD cân tại M => góc MAD =góc MDA (1)

ta có GÓC MAB+ GÓC MAD = 90 ĐỘ(2)

GÓC MDA +GÓC MDC =90ĐỘ (3)

(1) (2) (3) => GÓC MAB = GÓC MDC

4 tháng 7 2018

Gọi H là trung điểm của AB

Ta có
H là trung điểm của AB
M là trung điểm của BC
=> HM là đường trung bình của hình thang ABCD
=> HM // AB mà góc CAD =90° => góc AHM = 90°
=> HM vuông góc vs AD và đồng thời là trung điểm AD => Tam giác MAD cân tại M
=> góc MAD = góc MDA mà góc BAD = CDA (=90°)
=> MAB = MDC

20 tháng 8 2016

a/

có M là trung điểm BC

     N là trung điểm AD 

=> MN//AB//DC ( Tính chất đường trung bình)

=> MN vuông AD

Xét tam giác MAD có

MN vừa là đường trung tuyến ( N là trung điểm AD) vùa là đường trung trực ( N là trung điểm AD và MN vuông AD)

=>tam giác MAD cân tại M

b/

Ta có  tam giác MAD cân tại M => góc MAD =góc MDA (1)

ta có GÓC MAB+ GÓC MAD = 90 ĐỘ(2)

GÓC MDA +GÓC MDC =90ĐỘ (3)

(1) (2) (3) => GÓC MAB = GÓC MDC