K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 3 2020

Bạn thử tham khảo cách giải của mình nhé. 

a) Từ B hạ BI vuông góc với DC. => ABID là hình vuông => ID = IC = AB = \(\frac{CD}{2}\)

=> I là trung điểm DC => BI là đường cao mà BI đồng thời là đường trung tuyến

Do đó \(\Delta\)BCD cân tại B.

* Vì AB // DC (do ABCD là hình thang vuông) => \(\widehat{ABD}\)\(\widehat{BDI}\)\(45\)độ.

Mà \(\Delta\) BCD cân tại B => \(\widehat{BDI}\)\(\widehat{C}\)= 45 độ.

=> \(\widehat{DBC}\)= 90 độ. Vậy tam giác BCD vuông tại B.

b)  CD = 6 cm => AB = AB = \(\frac{CD}{2}\)\(\frac{6}{2}\)= 3 cm.

\(S_{ABCD}\)= (AB+CD) x AD : 2 = (3+6) x 3 : 2 = \(\frac{27}{2}\)= 13,5 (cm\(^2\))

19 tháng 6 2018

HS tự chứng minh

1 tháng 7 2016

giúp với

a: Xét ΔADC và ΔBCD có

AD=BC

AC=BD

DC chung

Do đó: ΔADC=ΔBCD

Suy ra: \(\widehat{ACD}=\widehat{BDC}\)

hay \(\widehat{ODC}=\widehat{OCD}\)

Xét ΔOCD có \(\widehat{ODC}=\widehat{OCD}\)

nên ΔCOD cân tại O

14 tháng 5 2019

. a) HS tự chứng minh

b) Kẻ đường cao AH, BK,chứng minh được DH = CK

Ta được   H D = C D − A B 2 = 3 c m

Þ AH = 4cm Þ  SABCD = 20cm2

25 tháng 10 2023

A B C D H E

1/

Xét tg vuông AHD và tg vuông EHD có

HA=HD (gt); DH chung => tg AHD = tg EHD (hai tg vuông có 2 cạnh góc vuông bằng nhau)

\(\Rightarrow\widehat{DAH}=\widehat{DEH}\)

Xét tg vuông AHD có

\(\widehat{DAH}=90^o-\widehat{ADH}=90^o-30^o=60^o\)

\(\Rightarrow\widehat{DAH}=\widehat{DEH}=60^o\)

Xét tg ADE có

\(\widehat{ADE}=180^o-\left(\widehat{DAH}+\widehat{DEH}\right)=180^o-\left(60^o+60^o\right)=60^o\)

\(\Rightarrow\widehat{DAH}=\widehat{DEH}=\widehat{ADE}=60^o\)

=> tg ADE là tg đều

2/

Xét tg vuông AHD có

\(AH=\dfrac{AD}{2}=\dfrac{8}{2}=4cm\) (trong tg vuông cạnh đối diện góc \(30^o\) bằng nửa cạnh huyền)

\(\Rightarrow AH=EH=4cm\Rightarrow AH+EH=AE=8cm\)

\(DH=\sqrt{AD^2-AH^2}=\sqrt{8^2-4^2}=4\sqrt{3}cm\) (Pitago)

\(\Rightarrow S_{ADE}=\dfrac{1}{2}.AE.DH=\dfrac{1}{2}.8.4\sqrt{3}=16\sqrt{3}cm^2\)

\(\Rightarrow S_{ABCD}=\dfrac{\left(AB+CD\right).AH}{2}=\dfrac{\left(7+10\right).4}{2}=34cm^2\)

 

30 tháng 5 2019

giải bài thang 1

15 tháng 7 2019

Diện tích hình thang ABCD là 49 cm2