Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 4:
Xét ΔAED vuông tại E và ΔBFC vuông tại F có
AD=BC
góc D=góc C
Do đó: ΔAED=ΔBFC
=>DE=CF
Bài 3:
a: Xét ΔADC và ΔBCD có
AD=BC
AC=BD
DC chung
Do đó: ΔADC=ΔBCD
=>góc ACD=góc BDC
b: Ta co: góc ACD=góc BDC
=>góc EAB=góc EBA
=>ΔEAB cân tại E
Cho hthang cân ABCD (AB // CD )
Cmr a, góc ACD = góc BDC.
b, gọi E là giao điểm của AC và BD. Cm EA=EB
b.Xét t.giác AED và t. giác CEB có
góc DAE = góc ECB (SLT)
AD=BC (hình thang cân abcd, t/c )
=> t.giác AED = t. giác CEB (cgc)
=> AE=EB , DE=CE
Xét t.giác DEC có AE=EB , DE=CE(cmt)=>t.giác DEC cân tại E(dhnb)=>EA=EB(đpcm)
1) AE cắt BD chứ k //, bn xem lại đầu bài
2) B = 360 - A-D -C = 360 -70-80-60 = 150o
b) mk không bit vẽ hình, bn dựa vào quan hệ các cạnh của tam giác rui lam
3) a) tam giác ABD cân nên góc ADB = ABD
mà ABD = BDC (so le) => ADB = BDC vây BD là phân giác góc D
b) tui nghi bn sai đề vi ABCD là hình thang, đương nhiên A+D =180, Tại sao gt cho lam j hay ng ta cho B+ D=180 mà bn chép sai? tui đoán gt cho B+D =180, bn xem lại, lam hình met lam
a)
\(\Delta ABC\)vuông tại A
\(\Rightarrow BC=\sqrt{AB^2+AC^2}=\sqrt{15^2+20^2}=20\left(cm\right)\)
BD là đường phân giác của \(\Delta ABC\)
\(\Rightarrow\frac{AD}{AB}=\frac{CD}{BC}=\frac{AD+CD}{AB+BC}=\frac{AC}{AB+BC}=\frac{20}{15+25}=\frac{1}{2}\)
\(\Leftrightarrow\frac{AD}{AB}=\frac{1}{2}\Rightarrow AD=\frac{AB}{2}=\frac{15}{2}=7,5\left(cm\right)\)
b)
Xét \(\Delta ABC\)và \(\Delta HBA\)CÓ:
\(\widehat{BAC}=\widehat{AHB}\left(=90^ô\right)\)
\(\widehat{ABC}\)là góc chung (gt)
Suy ra \(\Delta ABC\)đồng dạng với \(\Delta HBA\)(g.g)
\(\Rightarrow\frac{AB}{HB}=\frac{BC}{BA}=\frac{AC}{AH}\Rightarrow\hept{\begin{cases}AH=\frac{AB.AC}{BC}\\HB=\frac{AB^2}{BC}\end{cases}\Leftrightarrow\hept{\begin{cases}AH=\frac{15.20}{25}=12\left(cm\right)\\HB=\frac{15^2}{25}=9\left(cm\right)\end{cases}}}\)
c)
Xét \(\Delta ABD\)và \(\Delta HBI\)có;
\(\widehat{BAD}=\widehat{BHI}=90^o\)
\(\widehat{ABD}=\widehat{HBI}\left(gt\right)\)
SUY RA \(\Delta ABD\)đồng dạng với \(\Delta HBI\)(g.g)
\(\Rightarrow\frac{AB}{HB}=\frac{BD}{BI}\Leftrightarrow AB.BI=BD=HB\)
d)
\(\Delta ABD\)đồng dạng với \(\Delta HBI\) ( Theo câu c)
\(\frac{AD}{HI}=\frac{AB}{HB}\Rightarrow HI=\frac{AD.HB}{AB}=\frac{7,5.9}{15}=4,5\left(cm\right)\)
Ta có:
\(AI=AH-HI=12-4,5=7,5\left(cm\right)\)
Mà AD=7,5 cm
nên \(\Delta ADI\)cân tại A
e)
\(\Delta ABD\)đồng dạng vớI \(\Delta HBI\)( Theo câu c)
\(\Rightarrow\frac{AD}{IH}=\frac{BD}{BI}\Leftrightarrow AI.BI=BD.IH\)
a: Xét ΔACD và ΔBDC có
AD=BC
\(\widehat{ADC}=\widehat{BCD}\)
AC chung
Do đó: ΔACD=ΔBDC
Suy ra: \(\widehat{ACD}=\widehat{BDC}\)
b: Ta có: \(\widehat{EAB}=\widehat{ACD}\)
\(\widehat{EBA}=\widehat{BDC}\)
mà \(\widehat{ACD}=\widehat{BDC}\)
nên \(\widehat{EAB}=\widehat{EBA}\)
Xét ΔEAB có \(\widehat{EAB}=\widehat{EBA}\)
nên ΔEAB cân tại E
hay AE=BE