Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hạ AH và BK vuông góc với CD (H; k thuộc CD)
Dễ dàng c/m được ABKH là hình vuông => AB=KH
=> CD-AB=CD-KH=(DH+CK)
Xét tg vuông ADH có DH<AD
Xét tg vuông BCK có CK<BC
Mà AD=BC (hình thang ABCD là hình thang cân)
=> CK<AD
=> DH+CK<2AD
=> CD-AB<2AD
CD-AB<2AD
=>CD-AB<AD+BC
=>CD-AD<AB+BC
mà CD-AD<AC và AC<AB+BC
nên CD-AD<AB+BC(luôn đúng)
Xét ΔAHD và ΔBKC có:
\(\widehat{AHD}=\widehat{AKC}=90\left(gt\right)\)
AD=BC(gt)
\(\widehat{D}=\widehat{C}\left(gt\right)\)
=>ΔAHD=ΔBKC (cạnh huyền-góc nhọn)
=>DH=CK
Vì `E` là trung điểm `CD` nên `CE = ED = AB = AD`.
Vì `AB //// CD => AB //// ED`.
Và `AB = ED => ABED` là hình bình hành.
a) Vì ABCD là hình thang cân
=> B = A = 120°
=> Mà AB//CD
=> A + D = 180° ( trong cùng phía)
=> D = C = 60°