Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: góc ABD=góc BDC
=>góc ABD=góc ADB
=>ΔABD cân tại A
=>AB=AD=17cm
=>BC=17cm
b: Xét tứ giác ABED có
AB//ED
AB=ED
AB=ED
=>ABED là hình thoi
=>góc BEC=góc ADE
=>góc BEC=góc BCE
=>ΔBCE cân tại B
A B C D M O N E
Xét \(\Delta OEB\)và \(\Delta OMC\)có :
\(OB=OC\left(gt\right)\)
\(\widehat{EBO}=\widehat{MCO}\)
\(EB=MC\left(gt\right)\)
\(\Rightarrow\Delta OEB=\Delta OMC\left(c.g.c\right)\)
\(\Rightarrow OE=OM\)( hai cạnh tương ứng ) \(\left(1\right)\)
Cũng có : \(\widehat{EOB}=\widehat{MOC}\)( hai góc tương ứng )
\(\Rightarrow\widehat{EOB}+\widehat{BOM}=\widehat{BOM}+\widehat{MOC}\)
\(\Rightarrow\widehat{EOM}=\widehat{BOC}=90^o\left(2\right)\)
Từ ( 1 ) và ( 2 ) \(\Rightarrow\Delta OEM\)vuông cân ( đpcm )
\(b,\)Ta có : \(AB//CN\Rightarrow\Delta ABM~\Delta NCM\)
\(\Rightarrow\frac{CM}{BM}=\frac{MN}{AM}\Rightarrow\frac{CM}{BM+MN}=\frac{MN}{AM+MN}\)
\(\Rightarrow\frac{CM}{BC}=\frac{MN}{AN}\Rightarrow\frac{BE}{AB}=\frac{MN}{AN}\)
\(\Rightarrow ME//BN\)
Cho chị nợ câu c :) lâu không học toán 8 quên sạch ròi :((
Gọi K là giao điểm của OM và BN
Do \(ME//BN\)(CMb)
=> Góc BKM= góc EMO=45 độ
Xét tam giác OBM và tam giác OKB có
\(BKM=OBM=45^0\)
Góc O chung
=> tam giác OBM đồng dạng tam giác OKB
=> \(OB^2=OM.OK\)
MÀ \(OB=OC\)
=> \(OC^2=OM.OK\)
=> tam giác OMC đồng dạng tam giác OCK
=> \(MKC=OCM=45^o\)
=> BKC=90 độ
=> \(K\equiv H\)
=> O,M,H thẳng hàng
Vậy O,M,H thẳng hàng
từ B kẻ B F vuông góc vs CD( F thuộc CD) và từ A kẻ A G vuông góc vs CD(G thuộc Cd)
xét tg ADG và tg BCF có: AGD =BFC=90(cách vẽ), AD=BC, ADG=BCF (do tg ABCD là hthang cân)
=> tg ADG=tg BCF(ch-gn)=>DG=FC
xét tg ABFG có: AB//GF(vì AB//CD, G và F thuộc CD) và AG//BH (cùng // DC)=>tg ABFG là hbh=.AB=GF=4cm
ta có: DC=DG+GF+FC
<=>10=2.FC+4
<=>FC=3cm hay DG=3cm(vì DG=FC)
xet tg BCF vuông tại F(cách vẽ) có: BF^2 +FC^2 = BC^2( đl py-ta-go)
<=>BF^2=BC^2-FC^2=5^2 -3^2=16<=>BF=4(vì BF>0)
xét tg CHE có: BF//EH(cùng vuông góc vs CD)=>DF/DH=DB/DE(đl ta-lét)
<=>(DG+GF)/(DC+CH)=DB/(DB+BE)
<=>(3+4)/(10+HC)=DB/2DB (vì DB=BE)
<=>7/(10+HC)=1/2 =>10+HC=7.2=14=>HC=14-10=4cm
vậy độ dài cạnh HC là 4 cm
A B C D G F H E 4 5 5 4 3 3 4
Hạ \(BK\perp DH\left(K\in DH\right);\text{AF}\perp DH\left(F\in DH\right)\)
\(\Delta ADF=\Delta BCK\left(c.h-g.n\right)\)nên \(DF=CK\)
\(AB//FK;\text{AF}//BK\rightarrow AB=FK\)
Do đó :
\(KC=\frac{CD-AB}{2}=3\rightarrow DK=7\)
\(BH//EH;BD=BE\rightarrow DK=KH=\dfrac{DH}{2}=14\rightarrow SH=4\)