Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ABCD là tứ giác nên:
\(\begin{array}{l}\widehat A + \widehat B + \widehat C + \widehat D = {360^o}\\ \Rightarrow \widehat D = {360^o} - \widehat A - \widehat B - \widehat C = {360^o} - {60^o} - {70^o} - {80^o} = {150^o}\end{array}\)
Chọn đáp án C
Bài 1:
C1 là góc ngoài tại đỉnh C của tam giác ABC
=> C1 = 1800 - C
=> C = 1800 - C1 = 1800 - 1300 = 500
Tứ giác ABCD có:
A + B + C + D = 3600
A + 800 + 500 + 1200 = 3600
A = 3600 - 2500
A = 1100
Bài 2:
\(1,5=\frac{3}{2}\)
AB // CD
=> A + D = 1800
A = 1800 : (3 + 2) . 3 = 1080
D = 1800 - 1080 = 720
AB // CD
=> B + C = 1800 (2 góc trong cùng phía)
B = (1800 + 240) : 2 = 1020
C = 1800 - 1020 = 780
1. B
2. A
*Điền biểu thức thích hợp vào chỗ chấm:
\(a.2x^2\left(3x^3-x\right)=6x^5-2x^3\)
\(b.5x^2y-16x^2y=-11x^2y\)
Lời giải:
Kẻ đường cao $DH$ $(H\in BC$)
Tứ giác $ADHB$ có 3 góc vuông \((\widehat{A}=\widehat{B}=\widehat{H}=90^0\) ) nên là hình chữ nhật
\(\Rightarrow DH=AB; AD=BH\)
$CD$ bằng tổng 2 đáy, hay $CD=AD+BC$
Áp dụng định lý Pitago cho các tam giác vuông:
\(CD^2=DH^2+CH^2=AB^2+(BC-BH)^2=AB^2+(BC-AD)^2\)
\(\Leftrightarrow (AD+BC)^2=AB^2+(BC-AD)^2\)
\(\Leftrightarrow 2AD.BC=AB^2-2BC.AD\)
\(\Leftrightarrow AD.BC=\frac{AB^2}{4}=\frac{a^2}{4}\) (đpcm phần b)
\(\Leftrightarrow AD.BC=\frac{a}{2}.\frac{a}{2}=AM.MB\)
\(\Leftrightarrow \frac{AM}{BC}=\frac{AD}{BM}\)
Xét tam giác $AMD$ và $BCM$ có:
\(\widehat{MAD}=\widehat{CBM}=90^0; \frac{AM}{BC}=\frac{AD}{BM}\) (cmt)
\(\Rightarrow \triangle AMD\sim \triangle BCM(c.g.c)\Rightarrow \widehat{AMD}=\widehat{BCM}=90^0-\widehat{BMC}\)
\(\Rightarrow \widehat{AMD}+\widehat{BMC}=90^0\)
\(\Rightarrow \widehat{CMD}=180^0-(\widehat{AMD}+\widehat{BMC})=90^0\) (đpcm phần a)
a: góc C=180-100=80 độ
góc A=180-60=120 độ
b; MN=(AB+CD)/2
=>AB+CD=2MN
=>CD=2*15-10=20cm
Kẻ \(BH\perp CD\)
Mà \(CD\perp AD\left(gt\right)\Rightarrow BH//AD\)
Hình thang ABHD (AB//HD) có BH//AD nên \(\hept{\begin{cases}HD=AB=5\left(cm\right)\\BH=AD\end{cases}}\) (t/c hình thang)
\(HD+HC=DC\Rightarrow5+HC=9\Rightarrow HC=4\left(cm\right)\)
\(\Delta HBC\)vuông cân tại H nên \(HB=HC=4cm\Rightarrow AD=4cm\left(AD=BH\right)\)
Áp dụng định lí Pitago tính được \(BC=\sqrt{32}\left(cm\right)\)
Chu vi hình thang vuông ABCD là:
\(AB+BC+CD+AD=5+\sqrt{32}+9+4=18+\sqrt{32}\left(cm\right)\)
Chúc bạn học tốt.
Vì ABCD là hình thang cân nên \(\widehat A = \widehat B = {80^o}\)
Khi đó: \(\widehat C = \widehat D = \frac{{{{360}^o} - \widehat B - \widehat A}}{2} = \frac{{{{360}^o} - {{80}^o} - {{80}^o}}}{2} = {100^o}\left( {\widehat A + \widehat B + \widehat C + \widehat D = {{360}^o}} \right)\)
Chọn đáp án C