Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a ) Ta có : AH là đường cao
=> \(AH\perp DC\)
=> góc H1 = 90 độ ( 1 )
Và góc H1 +gócA1 = 180độ ( 2 góc trong cùng phía )
=> A1 = 180độ - H1 = 180độ - 90độ = 90độ ( 2 )
Ta có : BK là đường cao
=> \(BK\perp DC\)
=> góc K1 = 90 độ ( 3 )
Và góc K1 + góc B1 = 180 độ ( 2 góc trong cùng phía )
=> B1 = 180 độ - K1 =180độ - 90độ = 90 độ ( 4 )
Từ ( 1 ) , ( 2 ) , ( 3 ) và ( 4 ) => ABKH là hình chữ nhật ( tứ giác có 4 góc vuông )
b ) ( tg là tam giác nha ! )
Xét tgAHD và tgBKC , có :
AH = BK ( Hình chữ nhật có 2 cạnh đối bằng nhau )
AD = BC ( ABCD là hình thang cân )
gócH2 = gócK2 = 90độ ( AH và BK đều là đường cao )
Do đó : tgAHD = tgBKC ( cạnh huyền - cạnh góc vuông )
=> DH = CK ( 2 cạnh tương ứng )
c ) Ta có : DH = HE ( E là điểm đôi xứng của D qua H )
mà : DH = CK (cmt )
Do đó : CK = HE
Ta có : HK = HE + EK ( E là điểm nằm giữa K và H )
mà : AB = HK ( ABKH là hình chữ nhật ( cmt ) )
Do đó : AB = HE + EK
mà : CK = HE ( cmt )
suy ra : AB = CK + EK
Ta có :EC = CK + EK ( K là điểm nằm giữa của E và C )
=> AB = EC ( 5 )
Ta có : AB // DC ( ABCD là hình thang cân )
=> AB // EC ( 6 ) ( vì E là một điểm nằm trên DC )
Từ ( 5 ) và ( 6 ) suy ra ABCE là hình bình hành ( vì hình nình hành chỉ cần có một trong 2 cặp cạnh song song và bằng nhau )
d ) Ta có : \(S_{\Delta ADH}=\frac{1}{2}.AH.DH=\frac{1}{2}.4.3=6\left(cm^2\right)\)
Ta có : \(S_{ABKH}=AB.AH=6.4=24\left(cm^2\right)\)
Học tốt !!!
a: Xét tứ giác ABKH có
AB//KH
AH//BK
góc AHK=90 độ
Do đó; ABKH là hình chữ nhật
b: Xét ΔAHD vuông tại H và ΔBKC vuông tại K có
AD=BC
góc D=góc C
Do đó: ΔAHD=ΔBKC
=>DH=CK
c: Xét ΔAED có
AH vừa là đường cao, vừa là trung tuyên
nên ΔAED cân tại A
=>góc ADE=góc AED=góc C
=>AE//BC
mà AE=BC
nên ABCE là hình bình hành
Bài 1:
\(\widehat{B}=180^0-70^0=110^0\)
\(\widehat{D}=180^0-130^0=50^0\)
Bài 2:
Gọi E là trung điểm của CD
Xét tứ giác ABED có
AB//ED
AB=ED
DO đó: ABED là hình bình hành
mà AB=AD
nên ABED là hình thoi
mà \(\widehat{BAD}=90^0\)
nên ABED là hình vuông
=>BE vuông góc với DC
Ta có: ABED là hình vuông
nên DB là tia phân giác của góc ADE
=>\(\widehat{BDE}=45^0\)
Xét ΔBDC có
BE là đường cao
BE là đường trung tuyến
Do đó:ΔBDC cân tại B
=>\(\widehat{C}=45^0\)
hay \(\widehat{ABC}=135^0\)
Bài 1:
Giải: Vì AB // CD
=> A + D =180o
mà A = 3D => 3D + D = 180o
=> 4D = 180o
=> D = 45o => A = 135o
Ta có: AB // CD => B + C = 180o
mà B - C = 30o hay B = C + 30o
=> C + 30o + C = 180o
=> 2C = 150o => C = 75o => B = 105o
Bài 1:
Vì AB // CD (gt)
\(\Rightarrow\)\(\widehat{A} + \widehat{D} = 180^0\) (kề bù)
mà \(\widehat{A} = 3 \widehat{D}\) (gt)
\(\Rightarrow\)\(\widehat{D} = 45^0\) và \(\widehat{A} = 135^0\)
Vì AB // CD (gt)
\(\Rightarrow\)\(\widehat{B} + \widehat{C} = 180^0\) (kề bù)
mà \(\widehat{B} - \widehat{C} = 30^0\) (gt)
\(\Rightarrow\)\(2 \widehat{B} = 210^0\)
\(\Rightarrow\)\(\widehat{B} = 105^0\)
\(\Rightarrow\)\(\widehat{C} = 75^0\)
Vậy.......
a) Vì ABCD là hình thang cân
=> ADC = BCD = 70°
Mà AB//CD
=> BAD + ADC = 180°
=> BAD = 110°
Mà ABCD là hình thang cân
=> BAD = ABC = 110°
b) Xét ∆ vuông AHD và ∆ vuông BKC có :
AD = BC( ABCD là hình thang cân)
ADC = BCD (cmt)
=> ∆AHD = ∆BKC ( ch-gn)
=> DH = CK