K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 8 2021

undefined

Xét ΔADF và ΔBCF có 

AD=BC

\(\widehat{D}=\widehat{C}\)

FD=FC

Do đó: ΔADF=ΔBCF

Suy ra: FA=FB

Xét ΔFAB có FA=FB

nên ΔFAB cân tại F 

mà FE là đường trung tuyến ứng với cạnh đáy AB

nên FE là đường cao ứng với cạnh AB

hay FE\(\perp\)AB

29 tháng 3 2019

Gọi O là giao điểm của AC và BD.

Chứng minh: OE ^ AB.

Tương tự, có OF ^ CD.

Suy ra OF ^ AB. Vậy EF ^ AB

25 tháng 9 2023

Do ABCD là hình thang cân

\(\Rightarrow AD=BC\) và \(\widehat{FDA}=\widehat{FCB}\)

Do F là trung điểm của CD (gt)

\(\Rightarrow FC=FD\)

Xét \(\Delta ADF\) và \(\Delta BCF\) có:

\(AD=BC\) (cmt)

\(\widehat{FDA}=\widehat{FCB}\) (cmt)

\(FD=FC\) (cmt)

\(\Rightarrow\Delta ADF=\Delta BCF\) (c-g-c)

\(\Rightarrow AF=BF\) (hai cạnh tương ứng)

\(\Delta FAB\) có:

\(AF=BF\) (cmt)

\(\Rightarrow\Delta FAB\) cân tại F

Lại có E là trung điểm của AB

\(\Rightarrow FE\) là đường trung tuyến của \(\Delta FAB\)

\(\Rightarrow FE\) cũng là đường cao của \(\Delta FAB\)

\(\Rightarrow FE\perp AB\)

Mà AB // CD (gt)

\(\Rightarrow FE\perp CD\)

Vậy EF vuông góc với AB và CD

6 tháng 3 2018

30 tháng 7 2019

Câu hỏi của headsot96 - Toán lớp 8 - Học toán với OnlineMath

Em tham khảo!

31 tháng 1 2022

- Hình vẽ:

undefined

a) - Xét △EDM có:

AB//DM (ABCD là hình thang có 2 đáy là AB và CD).

=>\(\dfrac{AE}{EM}=\dfrac{AB}{DM}\) (định lí Ta-let) (1).

- Xét △FCM có:

AB//CM (ABCD là hình thang có 2 đáy là AB và CD).

=>\(\dfrac{BF}{MF}=\dfrac{AB}{CM}\) (định lí Ta-let) (2).

- Từ (1) và (2) và \(CM=DM\) (M là trung điểm BC) suy ra:

\(\dfrac{AE}{EM}=\dfrac{BF}{MF}\).

- Xét △ABM có:

\(\dfrac{AE}{EM}=\dfrac{BF}{MF}\) (cmt)

=>\(EF\)//\(AB\) (định lí Ta-let đảo)nên\(EF\)//\(AB\)//\(CD\)

b) -Xét △ADM có: 

HE//DM (cmt).

=>\(\dfrac{HE}{DM}=\dfrac{AE}{AM}\) (định lí Ta-let). (3)

- Xét △ACM có:

EF//CM (cmt)

=>\(\dfrac{EF}{CM}=\dfrac{AE}{AM}\) (định lí Ta-let) (4)

- Từ (3) và (4) và \(DM=CM\) (M là trung điểm BC) suy ra: \(HE=EF\)

-Xét △BDM có: 

EF//DM (cmt).

=>\(\dfrac{EF}{DM}=\dfrac{BF}{BM}\)(định lí Ta-let). (5)

- Xét △BCM có:

NF//CM (cmt)

=>\(\dfrac{NF}{CM}=\dfrac{BF}{BM}\) (định lí Ta-let) (6)

- Từ (5) và (6) và \(CM=DM\) (M là trung điểm BC) suy ra: \(NF=EF\)

Mà ​\(HE=EF\) nên \(HE=EF=NF=\dfrac{1}{3}HN\).

c) -Ta có: ​\(\dfrac{HE}{DM}=\dfrac{AE}{AM}\) (cmt)

=>​\(\dfrac{DM}{HE}=\dfrac{AM}{AE}\).

=>\(\dfrac{DM}{HE}-1=\dfrac{EM}{AE}\) (7)

- Ta có: \(\dfrac{AE}{EM}=\dfrac{AB}{DM}\) nên ​\(\dfrac{EM}{AE}=\dfrac{DM}{AB}\). (8)

- Từ (7) và (8) suy ra:

\(\dfrac{DM}{HE}-1=\dfrac{DM}{AB}\)

=>\(\dfrac{DM}{HE}=\dfrac{DM}{AB}+1=\dfrac{DM+AB}{AB}\)

=>\(HE=\dfrac{AB.DM}{AB+DM}=\dfrac{7,5.\left(12.\dfrac{1}{2}\right)}{7,5+\left(12.\dfrac{1}{2}\right)}=\dfrac{10}{3}\)

=>\(HN=3HE=3.\dfrac{10}{3}=10\) (cm).

 

​​​​

 

 

 

17 tháng 12 2018

a) Xét tam giác ACD có: AF=FC (gt) ; DK=KC (gt)

=> FK là đường trung bình của tam giác ACD

=> FK//AD

=> ADKF là hình thang

Chứng minh tương tự t cũng có: ME là đường trung bình của tam giác ABD

=> ME // AD mà FK//AD (cmt)

=> ME//FK (1)

Chứng minh tương tự ta cũng có:

MF là đường trung bình tam giác ABC , EK là đường trung bình tam giác DBC

=> MF//BC ; EK // BC

=> MF//EK (2)

Từ (1) và (2) ta có: EMFK là hình bình hành

18 tháng 12 2018

Bạn biết làm câu b và câu c không

20 tháng 9 2019

A B C D E F P

*Chứng minh EF // AB // CD

Gọi P là trung điểm AD có ngay:PF // AB (2) (PF là đường trung bình tam giác DAB)

Lại có PE // DC(là đường trung bình tam giác ADC) và DC // AB nên PE // AB(2)

Từ (1) và (2) theo tiên đề Ơclit suy ra P, E, F thẳng hàng. Mà PF // AB -> FE // AB(3)

Lại có PE // DC -> FE // DC (4). Từ (3) và (4)  suy ra đpcm.

* Chứng minh EF = \(\frac{CD-AB}{2}=\frac{CD}{2}-\frac{AB}{2}\)

Do PE = 1/2 CD; PF = 1/2 AB và P, E, F thẳng hàng nên:

\(PF+FE=PE\Leftrightarrow\frac{1}{2}AB+FE=\frac{1}{2}CD\Leftrightarrow FE=\frac{CD-AB}{2}\)

=> đpcm

P/s: ko chắc.

20 tháng 9 2019

Sửa tí: 

"Có ngay PF // AB (1)"