K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

  Trước tiên kẻ AM cắt CD tại I 

Ta xét tam giác AMB và IMD 
Hai tam giác đó bằng nhau vì MB=MD (gt) và góc AMB=IMD (đđ) và góc ABM=IDM (so le trong vì AB//CD) 

Vì vậy mà AB=ID và MA=MI 

Xét tam giác AIC có MA=MI và NA=NC nên MN là đường trung bình của tam giác AIC nên MN//CI và MN=(1/2)CI 

Do CI=CD-ID cũng như CI=CD-AB (do AB=ID cmt) và MN=(1/2)CI 
nên MN=(1/2)(CD-AB)

12 tháng 10 2016

kẻ BK vuông góc với DC tại K

Xét tam giác ADH và tam giác BCK có

góc AHD = góc BKC ( = 900)

AD = BC ( hai cạnh bên của hình thang cân)

góc ADH = góc BCK ( hai góc đáy của hình thang cân)

=> tg AHD = tg BKC ( cạnh huyền- góc nhọn)

=> HD = KC ( hai cạnh tương ứng )

mà HD = 4 cm( gt) => KC = 4 cm

mà KC + HK = HC 

=> HK = HC - KC

     HK = 12 -4 = 8(cm)

xét tứ giác ABKH có 

AB song với KH ( AB song song với DC) 

=> ABKH là hình thang( đn )

lại có AH song song với BK ( AH và Bk cùng vuông góc với DC)

=> AB = HK ( định lí về hình thang đặc biệt)

=> AB = 8 cm

4 tháng 12 2015
Mình giải vầy ko biết đúng không. Cho AB vuông góc với HC tại N có: AN vuông với NC NC vuông với HC(do AB//HC) AH vuông với HC(gt) => ANCH là hcn Xét 2 tam giác vuông ∆AHD và ∆CBN có AD=BC(gt) ANH=NC(ANCH là hcn. Cmt) =>∆AHD=∆CBN(ch_cgv) Có: S_ABCD=S_AHD+S_ABCH <=>S_ABCD=S_CBN+S_ABCH <=>S_ABCD=S_ANCH=12.8=96
4 tháng 12 2015

bạn cũng xem phim xứ giả tử thần à

3 tháng 6 2017

ABCDMPQN

Xét hình thang ABCD(AB//CD) có : NB=NC; MD=MA

\(\Rightarrow\) MN là đường trung bình hình thang ABCD

\(\Rightarrow\) MN//AB(1)

Ta có: \(\bigtriangleup\)BCA có NB=NC; PC=PA

\(\Rightarrow\) NP là đường trung bình của \(\bigtriangleup\)BCA

\(\Rightarrow\) NP//CD \(\Rightarrow\) NP//AB(vì AB//CD)(2)

Ta có: \(\bigtriangleup\)CDA có MD=MA; PC=PA

\(\Rightarrow\) MP là đường trung bình của \(\bigtriangleup\)CDA

\(\Rightarrow\) MP//CD \(\Rightarrow\) MP//AB(3)

Từ(1);(2);(3)\(\Rightarrow\) M,N,P thẳng hàng(*)

Ta có: \(\bigtriangleup\)CDB có QD=QB;NC=NB

\(\Rightarrow\) NQ là đường trung bình của \(\bigtriangleup\)CDB

\(\Rightarrow\) NQ//CD \(\Rightarrow\) NQ//AB(4)

Ta có: \(\bigtriangleup\)ADB có QD=QB;MD=MA

\(\Rightarrow\) MQ là đường trung bình của \(\bigtriangleup\)ADB

\(\Rightarrow\) MQ//CD \(\Rightarrow\) MQ//AB(4)

Từ(1)(3)(4) \(\Rightarrow\) N,Q,M thẳng hàng(**)

Từ(*);(**) \(\Rightarrow\) N,Q,P,M thẳng hàng

b. Ta có: NM là đường trung bình hình thang ABCD

\(\Rightarrow\) \(MN=\dfrac{x+y}{2}\)

Ta có NQ và MP là đưởng trung bình của \(\bigtriangleup\)CDB và \(\bigtriangleup\)CDA

\(\Rightarrow\) NQ=MP=\(\dfrac{y}{2}\)

Ta lại có: NQ+QP+PM=MN=\(\dfrac{x+y}{2}\)

Hay y + QP=\(\dfrac{x+y}{2}\)

\(\Leftrightarrow\) QP = \(\dfrac{x+y}{2}-y=\dfrac{x+y-2y}{2}=\dfrac{x-y}{2}\)

\(\Rightarrow\) MN+QP=\(\dfrac{x+y}{2}+\dfrac{x-y}{2}=\dfrac{x+y+x-y}{2}=\dfrac{2x}{2}=x\)

c) Ta có: MP=PQ=QN

\(\Leftrightarrow\) \(\dfrac{y}{2}=\dfrac{x-y}{2}=\dfrac{y}{2}\)

\(\Leftrightarrow\) \(\dfrac{y}{2}=\dfrac{x-y+y}{2+2}\) (Tính chất dãy tỉ số bằng nhau)

\(\Leftrightarrow\) \(\dfrac{y}{2}=\dfrac{x}{4}\) \(\Leftrightarrow\) \(4y=2x\) \(\Leftrightarrow\) \(x=2y\)