K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 11 2017

Ta thấy A gồm có 99 số hạng nên ta nhóm mỗi nhóm 3 số hạng.

Ta có: A = 1 + 5 + 52 + 53 + 54 + 55 +...+ 597 + 598 + 599

             = (1 + 5 + 52 )+ (53 + 54 + 55 )+...+( 597 + 598 + 599 )

             =(1 + 5 + 52 )+ 53(1 + 5 + 52 ) +...+ 597(1 + 5 + 52 )

             = ( 1 + 5 + 52)(1 + 53+....+597)

             = 31(1 + 53+....+597)

Vì có một thừa số là 31 nên A chia hết cho 31.

 P/s Đừng để ý câu trả lời của mình

17 tháng 10 2016

cho hình thang chứ ko phải hình vuông nha mấy bạn

22 tháng 10 2016

Tớ biết làm nè

.

.

.

.

.

.

.

.

.

.

.

Biết làm cl í, tin người vcl:))

HQ
Hà Quang Minh
Giáo viên
8 tháng 9 2023

a) i) \(ABCD\) là hình thang cân (gt)

\( \Rightarrow \widehat A = \widehat B\) (1) và \(DC\) // \(AE\)

Vì \(AD\;{\rm{//}}\;CE\) (gt)

\(\widehat A = \widehat {CEB}\) (cặp góc đồng vị)  (2)

Từ (1) và (2) suy ra: \(\widehat {CEB} = \widehat B\)

Suy ra \(\Delta CEB\) là tam giác cân.

ii) \(\Delta CEB\) cân tại \(C\) (cmt)

Suy ra: \(CE = BC\) (3)

Xét \(\Delta ADE\) và \(\Delta CED\) ta có:

\(\widehat {{\rm{ADE}}} = \widehat {{\rm{CED}}}\) (\(AD\)// \(CE\), cặp góc so le trong)

\(DE\) chung

\(\widehat {{\rm{AED}}} = \widehat {{\rm{CDE}}}\) (\(CD\) // \(AB\), cặp góc so le trong)

Suy ra: \(\Delta ADE = \Delta CED\) (g-c-g)

Suy ra: \(AD = CE\) (4)

Từ (3) và (4) suy ra: \(AD = BC\)

b) Chứng minh tương tự như ý a) ta có: Hình thang cân \(MNPQ\) có hai cạnh bên \(MQ = NP\)

Xét tam giác \(\Delta MQP\) và \(\Delta NPQ\) ta có:

\(MQ = NP\) (cmt)

\(\widehat {{\rm{MQP}}} = \widehat {{\rm{NPQ}}}\) (do \(MNPQ\) là hình thang cân)

\(PQ\) chung

Suy ra: \(\Delta MQP = \Delta NPQ\) (c-g-c)

\( \Rightarrow MP = NQ\) (hai cạnh tương ứng)

a: Xét tứ giác ABCH có

AB//CH

góc AHC=90 độ

Do đó: ABCH là hình thang vuông

b: Sửa đề; DH=CK

Xét ΔAHD vuông tại H và ΔBKC vuông tại K có

AD=BC

góc D=góc C

Do đo: ΔAHD=ΔBKC

=>DH=CK

c: Xét ΔAED có

AH vừa là đường cao, vừa là trung tuyến

nên ΔAED cân tại A

=>góc AED=góc ADE=góc BCD

=>AE//BC

mà AB//CE

nên ABCE là hình bình hành

18 tháng 4 2016

Vào xem câu hỏi tương tự thử s

31 tháng 10 2016

cho mình hỏi câu a bài 3 bạn làm sao z

HQ
Hà Quang Minh
Giáo viên
8 tháng 9 2023

a) Vì \(ABCD\) là hình thang cân (gt)

\( \Rightarrow AC = BD\) và \(AB\;{\rm{//}}\;CD\)

Xét \(\Delta BCD\) và \(\Delta CBE\) ta có:

\(\widehat {DCB} = \widehat {CBE}\) (do \(AB\) // \(CD\))

\(BC\) chung

\(\widehat {CBD} = \widehat {BCE}\) (do  \(CE\) // \(BD\))

Suy ra \(\Delta BCD = \Delta CBE\) (g-c-g)

Suy ra \(BD = CE\) (hai cạnh tương ứng)

Mà \(AC = BD\) (cmt)

Suy ra \(AC = EC\)

Suy ra \(\Delta CAE\) cân tại \(C\)

b) Xét \(\Delta ABD\) và \(\Delta BAC\) ta có:

\(DA = BC\) (do \(ABCD\) là hình thang cân)

\(\widehat {DAB} = \widehat {CBA}\) (Do \(ABCD\) là hình thang cân)

\(AB\) chung

Suy ra \(\Delta ABD = \Delta BAC\) (c-g-c)

27 tháng 11 2018

địt mẹ mày

27 tháng 11 2018

Mời tham khảo link :

         https://goo.gl/BjYiDy

22 tháng 5 2017

Giải bài 18 trang 75 Toán 8 Tập 1 | Giải bài tập Toán 8

a) Hình thang ABEC (AB//CE) có hai cạnh bên AC, BE song song nên chúng bằng nhau: AC = BE     (1)

Theo giả thiết AC = BD     (2)

Từ (1) và (2) suy ra BE = BD do đó ΔBDE cân

Giải bài 18 trang 75 Toán 8 Tập 1 | Giải bài tập Toán 8

Vậy hình thang ABCD có hai góc kề một đáy bằng nhau nên là hình thang cân.