Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Kẻ `AH, CK` vuông góc `CD`.
Xét `\DeltaADH` và `\DeltaBCK` có:
`AH =CK`
`\hatD=\hatC`
`AD=BC`
`=> \DeltaADH=\DeltaBCK`
`=> DH=CK=x`
Có: `CD=DH+HK+KC = x+12+x=18 => x=3` (cm)
`tanC=(BK)/(CK) <=> tan75^@ = (BK)/3 => BK =6+3\sqrt3 (cm)`
`=> S=1/2 .(AB+CD) .BK = 90+45\sqrt3 ≈ 168 (cm^2)`
Kẻ đường cao AH ứng với CD
Do ABCD là hình thang cân
\(\Rightarrow DH=\dfrac{CD-AB}{2}=3\left(cm\right)\)
Trong tam giác vuông ADH ta có:
\(tanD=\dfrac{AH}{DH}\Rightarrow AH=DH.tanD=3.tan75^0=6+3\sqrt{3}\left(cm\right)\)
\(S_{ABCD}=\dfrac{1}{2}AH.\left(AB+CD\right)\approx168\left(cm^2\right)\)
Kẻ \(AH;BK\) vuông góc với DC (H,K thuộc DC)
Xét \(\Delta\) AHD và \(\Delta\)BKC:
\(\widehat{AHD}=\widehat{BKC}=90^0\)
AD=BC( do ABCD là hình thang cân)
\(\widehat{D}=\widehat{C}\) (Hai góc cùng kề một đáy trong htc)
nên \(\Delta\)AHD=\(\Delta\)BKC(ch-gn) \(\Rightarrow DH=KC\)
Có AB//DC và AH//BK => ABKH là hbh => AB=HK
Có \(DH+HK+KC=DC\) \(\Leftrightarrow2KC+AB=DC\Leftrightarrow KC=\dfrac{50-14}{2}=18\) (cm)
Áp dụng hệ thức trong tam giác vuông CDB có:
\(BK^2=DK.KC\Leftrightarrow BK=\sqrt{DK.KC}=\sqrt{\left(DC-KC\right).KC}=24\) (cm)
Diện tích hình thang là: \(S=\dfrac{1}{2}BK\left(AB+CD\right)=\dfrac{1}{2}.24\left(14+50\right)=768\) (cm2)
từ các đỉnh A,B hạ các đường cao AE,BF vuông góc với CD
dễ chứng minh tứ giác ABFE là hình chữ nhật
=>EF=AB=12cm
do ABCD là hình thang cân \(=>AD=BC,\angle\left(D\right)=\angle\left(C\right)\)
mà \(\angle\left(AED\right)=\angle\left(BFC\right)=90^O\)
\(=>\Delta ADE=\Delta BFC\left(ch-cgn\right)=>DE=FC=\dfrac{1}{2}.\left(DC-EF\right)\)
\(=\dfrac{1}{2}\left(18-12\right)=3cm\)
xét trong tam giác BFC vuông tại F
\(=>\)\(\cos75^o=\dfrac{FC}{BC}=>BC=11,6cm\)
pytago \(=>BF=\sqrt{BC^2-FC^2}=\sqrt{11,6^2-3^2}=11,2cm\)
\(=>S=\dfrac{BF\left(AB+DC\right)}{2}=....\) thay số