K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

HQ
Hà Quang Minh
Giáo viên
11 tháng 1

a)      Vì \(d\parallel CD\) nên \(MP\parallel CD\)

Xét tam giác ADC với \(MP\parallel CD\) có: \(\frac{{AM}}{{MD}} = \frac{{AP}}{{PC}}\,\,\left( 1 \right)\) (Định lý Thales)

Vì \(d\parallel AB\) nên \(PN\parallel AB\)

Xét tam giác ABC với \(PN\parallel AB\) có: \(\frac{{BN}}{{NC}} = \frac{{AP}}{{PC}}\,\,\left( 2 \right)\) (Định lý Thales)

Từ (1) và (2) ta có \(\frac{{AM}}{{MD}} = \frac{{BN}}{{NC}}\).

b)     Vì \(MD = 2MA\) nên \(\frac{{AM}}{{MD}} = \frac{1}{2} \Rightarrow \frac{{AM}}{{AD}} = \frac{1}{3}\)

Xét tam giác ADC với \(MP\parallel CD\) có: \(\frac{{AM}}{{AD}} = \frac{{MP}}{{DC}}\) (Hệ quả định lý Thales)

\( \Rightarrow \frac{{MP}}{{DC}} = \frac{1}{3} \Rightarrow MP = \frac{1}{3}DC = 2cm\)

Vì \(\frac{{AM}}{{AD}} = \frac{1}{3} \Rightarrow \frac{{AP}}{{AC}} = \frac{1}{3} \Rightarrow \frac{{PC}}{{CA}} = \frac{2}{3}\)

Xét tam giác ABC với \(PN\parallel AB\) có: \(\frac{{CP}}{{CA}} = \frac{{PN}}{{AB}}\) (Hệ quả định lý Thales)

\( \Rightarrow \frac{{PN}}{{AB}} = \frac{2}{3} \Rightarrow PN = \frac{2}{3}AB = \frac{8}{3}cm\)

Mà \(MN = MP + PM = 2 + \frac{8}{3} = \frac{{14}}{3}cm\).

1 tháng 3 2022

gfvfvfvfvfvfvfv555

17 tháng 11 2023

óc

22 tháng 1 2022

Xét tam giác ABD có:

AB//IE (gt)

=>\(\dfrac{IE}{AB}=\dfrac{DI}{BD}\)(định lí Ta-let). (1)

Xét tam giác ABI có:

AB//DC (gt)

=>\(\dfrac{DI}{BD}=\dfrac{CI}{AC}\)(định lí Ta-let) (2)

Xét tam giác ABC có:

IF//AB (gt)

=>\(\dfrac{IF}{AB}=\dfrac{CI}{AC}\)(định lí Ta-let) (3)

- Từ (1),(2),(3) suy ra \(\dfrac{EI}{AB}=\dfrac{IF}{AB}\)=>EI=IF

Ta có: \(\dfrac{IE}{AB}=\dfrac{DI}{BD}\)(cmt) =>\(\dfrac{AB}{IE}=\dfrac{BD}{DI}\)=>\(\dfrac{AB}{IE}-1=\dfrac{BI}{DI}\)(4)

Xét tam giác ABI có:

AB//DC (gt)

=>\(\dfrac{BI}{DI}=\dfrac{AB}{DC}\)(định lí Ta-let) (5)

- Từ (4) và (5) suy ra: \(\dfrac{AB}{IE}-1=\dfrac{AB}{DC}\)

=>\(\dfrac{AB}{IE}=\dfrac{DC+AB}{DC}\)

=>IE=IF=\(\dfrac{AB.DC}{AB+DC}=\dfrac{4.5}{9}=\dfrac{20}{9}\left(cm\right)\)

29 tháng 7 2016

có ai giúp mk với ạ

28 tháng 7 2017

Đáp án của mik là:………

24 tháng 2 2020

a) Gọi AC∩MN=G

Do MN//AB//DC theo định lý Ta-let ta có:

NB/NC=MA/MD=1/3

b) Do MG//DC ⇒AM/AD=MG/DC=1/4

MG=DC/3=5

Do GN//AB⇒CN/CB=GN/AB=3/4

suy ra GN=3AB/4=6

⇒MN=GM+GN=11cm

image

24 tháng 2 2020

( Hình vẽ thì mượn tạm nhá :33 )image

a) Ta gọi giao điểm của AC và MN là G. \(\Rightarrow\hept{\begin{cases}MG//DC//AB\\NG//DC//AB\end{cases}}\)

Ta thấy : \(MD=3MA\Rightarrow\frac{AM}{MD}=\frac{1}{3}\)

Áp dụng định lý Talet ta được :

+) \(MG//DC\Rightarrow\frac{MA}{MD}=\frac{AG}{GC}=\frac{1}{3}\) (1)

+) \(NG//AB\Rightarrow\frac{AG}{GC}=\frac{BN}{NC}=\frac{1}{3}\) ( do (1) )

Vậy : \(\frac{NP}{NC}=\frac{1}{3}\)

Phần b) Bạn biết làm rồi nên mình không trình bày nữa nhé !