Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABC có
E là trung điểm của AB
F là trung điểm của BC
Do đó: EF là đường trung bình của ΔABC
Suy ra: EF//AC và \(EF=\dfrac{AC}{2}\left(1\right)\)
Xét ΔADC có
H là trung điểm của AD
G là trung điểm của CD
Do đó: HG là đường trung bình của ΔADC
Suy ra: HG//AC và \(HG=\dfrac{AC}{2}\left(2\right)\)
Xét ΔABD có
E là trung điểm của AB
H là trung điểm của AD
Do đó: EH là đường trung bình của ΔABD
Suy ra: \(HE=\dfrac{BD}{2}\)
mà AC=BD
nên HE=EF
Xét tứ giác EFGH có
EF//HG
EF=HG
Do đó: EFGH là hình bình hành
mà HE=EF
nên EFGH là hình thoi
Bai 1
Bo de : \(\Delta ABC\) trung tuyen AD
\(\Rightarrow S_{ADB}=S_{ADC}\)
cai nay ban tu chung minh nha
Ap dung bo de va bai nay => \(S_{MNPQ}=S_{MQP}+S_{MNP}=\frac{1}{3}S_{MDC}+\frac{1}{3}S_{ABP}\)
ta phai chung minh \(S_{MDC}+S_{ABP}=S_{ABCD}\)
That vay co \(S_{AMP}=S_{AMD},S_{MBP}=S_{MBC}\)
=> \(S_{ABP}+S_{MDC}=S_{ADM}+S_{MDC}+S_{MBC}=S_{ABCD}\)
=> dpcm
Bài 2;
Gọi M là trung điểm của HD
Xét ΔHDC có HM/HD=HI/HC
nên MI//DC và MI=DC/2
=>MI vuông góc với AD và MI=AB
Xét tứ giác ABIM có
AB//IM
AB=IM
Do đó: ABIM là hình bình hành
=>BI//AM
Xét ΔADI có
DH,IM là các đường cao
DH cắt IM tại M
Do đó: M là trực tâm
=>AM vuông góc với ID
=>IB vuông góc với DI