K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 12 2018

Giả thiết - kết luận

GT KL ABCD a là đáy lớn b là đáy nhỏ h h là chiều cao S=1/2.(a+b).h

Chứng minh :

Diện tích tam giác ACB bằng \(\frac{CB\times AH}{2}\)

Diện tích hình thang ABCD bằng diện tích tam giác ACB nên :

\(\frac{CB\times AH}{2}=\frac{(AB+CD)\times AH}{2}\Leftrightarrow\frac{\left(a+b\right)\times h}{2}\) (Vì\(BD+CD=CB\Leftrightarrow AB+CD=CB\left(A\equiv D\right)\) )

\(\Rightarrow S_{\text{hình thang}}=\frac{\left(a+b\right)\cdot h}{2}\)

(S là diện tích, a là đáy lớn, b là đáy nhỏ, h là chiều cao \(\left(a,b,h\inℚ;a,b,c>0\right)\))

Okay !

GV
29 tháng 4 2017

A B C D E M h N

Kéo dài AB về phía B một đoạn BE=DC. Nối DE cắt BC tại M.

Do CD // BE nên ta có tam giác MDC = tam giác MEB (trường hợp g.c.g). Suy ra dt(ABCD)=dt(ABMD) + dt(MDC) = dt(ABMD) + dt(MEB) = dt(DAE) = 1/2 .AE . h =1/2 (AB + BE).h = \(\dfrac{AB+CD}{2}.h\)

b) Theo câu a) thì diện tích hình thang ABCD bằng diện tích tam giác DAE nên ta nối D với trung điểm N của AE thì DN sẽ chia tam giác DAE thành 2 phần bằng nhau. Khi đó diện tích tam giác DAN bằng nửa diện tích hình thang ABCD.

14 tháng 4 2019

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Gọi F là trung điểm của cạnh bên BC. Cắt hình thang theo đường DF đưa ghép về như hình vẽ bên, điểm C trung với điểm B, D trùng với E.

Vì AB // CD ⇒ ∠ (ABC) = 180 0 ⇒ A, B, E thẳng hàng

∠ (ABF) +  ∠ (DFC) =  180 0

⇒ D, F, E thẳng hàng

△ DFC = △ EFB (g.c.g)

S D F C = S E F B

Suy ra: S A B C D = S A D E

△ DFC =  △ EFB⇒ DC = BE

AE = AB + BE = AB + DC

S A D E  = 1/2 DH. AE = 1/2 DH. (AB + CD)

Vậy : S A B C D = 1/2 DH. (AB + CD)

26 tháng 12 2017

Bạn tự vẽ hình nha ( hình nó dễ )

Gọi F là trung điểm của BC. Cắt hình thang theo đường DF đưa ghép vềnhư hình vẽ, điểm C trùng với điểm B , điểm D trùng với điểm E 

Vì AB // CD \(\Rightarrow\)\(\widehat{ABC}+180\)độ \(\Leftrightarrow\)A ; B ; E thẳng hàng

\(\widehat{ABF}+\widehat{DFC}=180\)độ

\(\Rightarrow\)D ; F ; E thẳng hàng

\(\Delta DFC=\Delta EFB\left(g-c-g\right)\)

Diện tích DFC = diện tích EFB

\(\Rightarrow\)Diện tích ABCD = diện tích ADE

\(\Delta DFC=\Delta EFB\left(cmt\right)\)

DC = BE

AE = AB + BE = AB + CD 

Diện tích ADE = \(\frac{1}{2}DH.AE=\frac{1}{2}DH.\left(AB+CD\right)\)

Vậy diện tích ABCD = \(\frac{1}{2}DH.AE=\frac{1}{2}DH.\left(AB+CD\right)\)

17 tháng 10 2016

cho hình thang chứ ko phải hình vuông nha mấy bạn

22 tháng 10 2016

Tớ biết làm nè

.

.

.

.

.

.

.

.

.

.

.

Biết làm cl í, tin người vcl:))

Bài 2: 

a: Xét ΔABE và ΔACF có

góc ABE=góc ACF

AB=AC

góc A chung

Do đó: ΔABE=ΔACF

Suy ra: AE=AF

b: Xét ΔABC có AF/AB=AE/AC
nên FE//BC

=>BFEC là hình thang

mà CF=BE

nên BFEC là hình thang cân

c: Xét ΔFEB có góc FEB=góc FBE

nên ΔFEB cân tại F

=>FE=FB=EC