Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C D O
Xét tam giác ABC và BAD có :
AB : chung
\(\widehat{BAD}=\widehat{ABC}\)
AD = BC
( ABCD là hình thang cân )
\(\Rightarrow\Delta ABC=\Delta BAD\)
\(\Rightarrow\widehat{BAC}=\widehat{ABD}\)
\(\Delta AOB\)CÓ : \(\widehat{OAB}=\widehat{OBA}\Rightarrow\Delta AOB\)cân tại O nên OA = OB
a) Dễ dàng chứng minh góc BXC = 90
=> tam giác ABX đồng dạng với tam giác DXC => BX/CX = AB/DX => AB/BX = DX/CX (1)
=> tam giác ABX đồng dạng với tam giác XBC => AB/XB = AX/CX (2)
Từ (1), (2)
=> AX = DX => X là trung điểm AD
b) Từ câu a có tam giác ABX đồng dạng với tam giác DXC
=> AB.DC = AX.DX
Theo định lý pytago có:
BC^2 = BX^2 + CX^2 = AB^2 + AX^2 + DX^2 + CD^2 = (AB + CD)^2
=> BC = AB + CD
Bài 4:
Xét ΔAED vuông tại E và ΔBFC vuông tại F có
AD=BC
góc D=góc C
Do đó: ΔAED=ΔBFC
=>DE=CF
Bài 3:
a: Xét ΔADC và ΔBCD có
AD=BC
AC=BD
DC chung
Do đó: ΔADC=ΔBCD
=>góc ACD=góc BDC
b: Ta co: góc ACD=góc BDC
=>góc EAB=góc EBA
=>ΔEAB cân tại E