Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ Ta có hình thang ABCD với A=D=90 độ và AC vuông BD. Vì AD=3 căn 13cm và OD=9cm, ta có:
OD^2 + AD^2 = OA^2
9^2 + (3 căn 13)^2 = OA^2
81 + 9*13 = OA^2
81 + 117 = OA^2
198 = OA^2
OA = căn 198 cm
Vì AC vuông BD, ta có:
AC^2 + BD^2 = OA^2
AC^2 + (AD - BC)^2 = OA^2
AC^2 + (3 căn 13 - BC)^2 = 198
AC^2 + 9*13 - 6 căn 13 * BC + BC^2 = 198
AC^2 + BC^2 - 6 căn 13 * BC + 117 = 198
AC^2 + BC^2 - 6 căn 13 * BC = 198 - 117
AC^2 + BC^2 - 6 căn 13 * BC = 81
Vì AC vuông BD, ta có:
AC^2 + BD^2 = OA^2
AC^2 + (AD - BC)^2 = OA^2
AC^2 + (3 căn 13 - BC)^2 = 198
AC^2 + 9*13 - 6 căn 13 * BC + BC^2 = 198
AC^2 + BC^2 - 6 căn 13 * BC + 117 = 198
AC^2 + BC^2 - 6 căn 13 * BC = 198 - 117
AC^2 + BC^2 - 6 căn 13 * BC = 81
b/ Qua O vẽ đường thẳng song song với đáy cắt AD và BC tại M và N. Ta có:
MN = AD - BC
MN = 3 căn 13 - BC
a, Áp dụng các hệ thức lượng trong tam giác vuông ABD, tính được BD = 25cm, OB = 9cm, OD = 16cm
b, Áp dụng các hệ thức lượng trong tam giác vuông DAC tính được OA = 12cm, AC = 100 3 cm
c, Tính được S = 1250 3 c m 2
Dựng hình bình hành ABPC. Khi đó \(AD=AB+CD=CP+CD=DP\)
Ta có \(\dfrac{AB}{FE}=\dfrac{DA}{DF}\), \(\dfrac{CD}{FE}=\dfrac{DA}{AF}\)
\(\Rightarrow\dfrac{AB+CD}{FE}=DA\left(\dfrac{1}{DF}+\dfrac{1}{AF}\right)\)
\(\Rightarrow\dfrac{1}{FE}=\dfrac{DA}{DF.AF}\) \(\Rightarrow\dfrac{DF}{FE}=\dfrac{DP}{FA}\) \(\Rightarrow\dfrac{DF}{DC}=\dfrac{DP}{DA}=1\)
Từ đó \(\Delta DFC\) cân tại D. \(\Rightarrow\widehat{DFC}=\widehat{DCF}=\widehat{CFE}\) \(\Rightarrow\) FC là tia phân giác của \(\widehat{DFE}\). CMTT, FB là tia phân giác của \(\widehat{AFE}\). Do đó \(\widehat{BFC}=90^o\) (đpcm)
a, Tính được DB=15cm. A D B ^ ≈ 37 0 ; A B D ^ ≈ 53 0
b, Tính được AO=7,2cm, DO=9,6cm và AC=20cm
c, Kẻ OK ⊥ DC tại K
DH=AB=9cm, DC=16cm, DK=5,76cm và OK=7,68cm
Từ đó S D O H = O K . D H 2 = 7 , 68 . 9 2 = 34,56 c m 2
Xét tam giác \(ABD\)vuông tại \(A\):
\(BD^2=AB^2+AD^2\)(định lí Pythagore)
\(=4^2+10^2=116\)
\(\Rightarrow BD=\sqrt{116}=2\sqrt{29}\left(cm\right)\)
Lấy \(E\)thuộc \(CD\)sao cho \(AE\perp AC\)
Suy ra \(ABDE\)là hình bình hành.
\(AE=BD=2\sqrt{29}\left(cm\right),DE=AB=4\left(cm\right)\).
Xét tam giác \(AEC\)vuông tại \(A\)đường cao \(AD\):
\(\frac{1}{AD^2}=\frac{1}{AE^2}+\frac{1}{AC^2}\Leftrightarrow\frac{1}{AC^2}=\frac{1}{AD^2}-\frac{1}{AE^2}=\frac{1}{100}-\frac{1}{116}=\frac{1}{715}\)
\(\Rightarrow AC=\sqrt{715}\left(cm\right)\)
\(AE^2=ED.EC\Leftrightarrow EC=\frac{AE^2}{ED}=\frac{116}{4}=29\left(cm\right)\)suy ra \(DC=25\left(cm\right)\)
Hạ \(BH\perp CD\).
\(BC^2=HC^2+BH^2=21^2+10^2=541\Rightarrow BC=\sqrt{541}\left(cm\right)\)
\(S_{ABCD}=\left(AB+CD\right)\div2\times AD=\frac{4+25}{2}\times10=145\left(cm^2\right)\)