Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài này dễ thôi nhưng mà mk ko biết vẽ hình .
Hay bạn đến nhà mình mk bảo cho !
Diện tích tam giác ADO là:
4×3=12 (cm2 )
Diện tích tam giác ABD là:
4+12=16 (cm2 )
Diện tích tam giác BCD là:
16×3=48 (cm2 )
Diện tích hình thang ABCD là:
48+16=64 (cm2 )
ĐS: 64 cm2
Xét ΔOAB và ΔOCD có
góc OAB=góc OCD
góc AOB=góc COD
=>ΔOAB đồng dạng vơi ΔOCD
=>\(\dfrac{S_{OAB}}{S_{OCD}}=\left(\dfrac{AB}{CD}\right)^2=\dfrac{1}{9}\) và OA/OC=AB/CD=1/3
=>\(S_{OCD}=54\left(cm^2\right)\) và \(S_{BOC}=3\cdot S_{BOA}=3\cdot6=18\left(cm^2\right)\)
=>\(S_{AOD}=18\left(cm^2\right)\)
\(S_{ABCD}=18+18+54+6=60+36=96\left(cm^2\right)\)
Xét tam giác ABC và tam giác ADC có đường cao hạ từ C xuống AB bằng đường cao hạ từ A xuống CD nên
\(\frac{S_{ABC}}{S_{ADC}}=\frac{AB}{CD}=\frac{1}{3}\)
Hai tam giác trên lại chung đáy AC nên
S(ABC) / S(ADC) = đường cao hạ từ B xuống AC / đường cao hạ từ D xuống AC = 1/3
Xét tam giác BOC và tam giác DOC có chung cạnh đáy OC nên
S(BOC) / S(DOC) = đường cao hạ từ B xuống AC / đường cao hạ từ D xuống AC = 1/3
\(\Rightarrow S_{DOC}=3xS_{BOC}=3x15=45cm^2\)
\(S_{BCD}=S_{BOC}+S_{DOC}=15+45=60cm^2\)
Xét tam giác ABD và tam giác BCD có đường cao hạ từ D xuống AB bằng đường cao hạ từ B xuống CD nên
\(\frac{S_{ABD}}{S_{BCD}}=\frac{AB}{CD}=\frac{1}{3}\Rightarrow S_{ABD}=\frac{S_{BCD}}{3}=\frac{60}{3}=20cm^2\)
\(S_{ABCD}=S_{ABD}+S_{BCD}=20+60=80cm^2\)