Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.
a, Trọng Tâm G: \(\left\{{}\begin{matrix}x_G=\dfrac{x_A+x_B+x_C}{3}=\dfrac{8}{3}\\y_G=\dfrac{y_A+y_B+y_C}{3}=\dfrac{8}{3}\end{matrix}\right.\)
\(\Rightarrow G=\left(\dfrac{8}{3};\dfrac{8}{3}\right)\)
b, \(ABCD\) là hình bình hành \(\Leftrightarrow\vec{AB}=\vec{DC}\)
\(\Leftrightarrow\left\{{}\begin{matrix}x_B-x_A=x_C-x_D\\y_B-y_A=y_C-y_D\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x_D=0\\y_D=6\end{matrix}\right.\)
\(\Rightarrow D=\left(0;6\right)\)
c, \(\vec{AM}=3\vec{BC}\Leftrightarrow\left\{{}\begin{matrix}x_M=x_A+3\left(x_C-x_B\right)=-6\\y_M=y_A+3\left(y_C-y_B\right)=14\end{matrix}\right.\)
\(\Rightarrow M=\left(-6;14\right)\)
Ta có: \(AM = BM = CN = DN,AN = BN = CM = DM\). Từ đó suy ra
\(\left| {AM - AN} \right| = \left| {BM - BN} \right| = \left| {CM - CN} \right| = \left| {DM - DN} \right| \).
Và \(\left| {AM - AN} \right| <MN\) (bất đẳng thức trong tam giác)
Vậy bốn điểm \(A,B,C,D\) cùng thuộc một đường hyperbol với M,N là hai tiêu điểm.
a: \(\overrightarrow{AD}+\overrightarrow{DC}=\overrightarrow{AC}\)
b: \(\overrightarrow{NA}+\overrightarrow{ND}=\overrightarrow{0}\)
Bài hệ đặt: √(x^2 + 4) = a; (y + 1) = b.
Thì có hệ:
a + √(b^2 - 5) = 4; √(a^2 + 5) + b = 6
Hệ này thì đơn giản rồi. Cứ bình phương rồi lấy (1) - (2) sẽ chỉ còn ẩn theo a, b lúc đó rút thế là xong.
Chọn A.
+ Vì L là điểm chính giữa
+ Vì N là điểm chính giữa
+ Ta có
Vậy L hoặc N là mút cuối của
Gọi I là trung điểm MN \(\Rightarrow I\left(-\dfrac{1}{2};\dfrac{1}{2}\right)\)
\(\overrightarrow{NM}=\left(3;1\right)\Rightarrow\) đường thẳng AC qua I và vuông góc MN có dạng:
\(3\left(x+\dfrac{1}{2}\right)+1\left(y-\dfrac{1}{2}\right)=0\Leftrightarrow3x+y+1=0\)
A thuộc AC nên tọa độ có dạng: \(A\left(a;-3a-1\right)\Rightarrow\left\{{}\begin{matrix}\overrightarrow{AM}=\left(1-a;3a+2\right)\\\overrightarrow{AN}=\left(-2-a;3a+1\right)\end{matrix}\right.\)
\(\overrightarrow{AM}.\overrightarrow{AN}=0\Leftrightarrow\left(1-a\right)\left(-2-a\right)+\left(3a+2\right)\left(3a+1\right)=0\)
\(\Rightarrow\) Giải pt ra \(a\Rightarrow\) tọa độ A
\(\Rightarrow\) Tọa độ B (tính qua N là trung điểm AB) và tọa độ D (tính qua M là trung điểm AD)
\(\Rightarrow\) Tọa độ C (tính dựa trên \(\overrightarrow{AB}=\overrightarrow{DC}\))
Vì M; N lần lượt là trung điểm của AD; BC
M A → + M D → = 0 → B N → + C N → = 0 → .
Dựa vào đáp án, ta có nhận xét sau:
A đúng, vì :
M D → + C N → + D C → = M N → = M D → + D C → + C N → = M C → + C N → = M N → .
B đúng, vì A B → − M D → + B N → = A B → + B N → − M D → = A N → − A M → = M N → .
C đúng, vì M N → = M A → + A B → + B N → và M N → = M D → + D C → + C N → .
Suy ra
2 M N → = M A → + M D → + A B → + D C → + B N → + C N → = 0 → + A B → + D C → + 0 → = A B → + D C →
⇒ M N → = 1 2 A D → + B C → .
D sai, vì theo phân tích ở đáp án C.
Chọn D.