Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Kẻ CH,DK lần lượt vuông góc AB
ΔCAB vuông tại C
=>CA^2+CB^2=AB^2
=>CA^2+10^2=26^2
=>CA=24cm
ΔCAB vuông tại C có CH là đường cao
nên CH*AB=CA*CB
=>CH*26=10*24=240
=>CH=120/13(cm)
ΔCHB vuông tại H
=>HB^2+CH^2=CB^2
=>HB^2=10^2-(120/13)^2=2500/169(cm)
=>HB=50/13(cm)
Xét ΔDKA vuông tại K và ΔCHB vuông tại H có
DA=CB
góc DAK=góc CBH
=>ΔDKA=ΔCHB
=>KA=HB=50/13cm
KH=AB-AK-HB
=26-50/13*2=238/13(cm)
Xét tứ giác KDCH có
DC//KH
DK//CH
Do đó: KDCH là hình bình hành
=>DC=KH=238/13(cm)
S ABCD=1/2*(DC+AB)*CH
=1/2(238/13+26)*120/13
=34560/169(cm2)
Kẻ CH,DK vuông góc với AB
ΔCAB vuông tại C
=>CA^2+CB^2=AB^2
=>CA^2=26^2-10^2=576
=>CA=24(cm)
Xét ΔCAB vuông tại C có CH là đường cao
nên CH*AB=CA*CB
=>CH*26=24*10=240
=>CH=120/13(cm)
ΔCAB vuông tại C có CH là đường cao
nên BH*BA=CB^2
=>BH=10^2/26=100/26=50/13(cm)
Xét ΔDKA vuông tại K và ΔCHB vuông tại H có
DA=CB
góc DAK=góc CBH
=>ΔDKA=ΔCHB
=>BH=KA=50/13(cm)
=>KH=26-50/13*2=238/13(cm)
Xét tứ giác DCHK có
DC//HK
DK//HC
=>DCHK là hình bình hành
=>DC=HK=238/13(cm)
S ABCD=1/2(DC+AB)*CH
=1/2(238/13+26)*120/13
=60/13*576/13
=34560/169cm2
Hai đường chéo AC, BD cắt nhau tại H. Trong tam giác vuông ABD, ta có:
Kẻ đường cao CK của tam giác ABC, dễ thấy KB = AB – DC = 6 - 8/3 = 10/3.
Tam giác vuông ABD có D B 2 = A B 2 + A D 2 = 6 2 + 4 2 = 52, từ đó DB = 52 = 2 13 (cm)
Theo đề có:
\(\dfrac{HD}{BH}=\dfrac{AD^2}{AB^2}=\dfrac{4^2}{6^2}=\dfrac{4}{9}\)
Tam giác HDC ∼ tam giác HBA nên:
\(\dfrac{DC}{AB}=\dfrac{HD}{BH}=\dfrac{4}{9}\Rightarrow DC=AB.\dfrac{4}{9}=6.\dfrac{4}{9}=\dfrac{8}{3}\left(cm\right)\)
Từ C kẻ CK là đường cao của tam giác ABC có: \(KB=AB-DC=6-\dfrac{8}{3}=\dfrac{10}{3}\left(cm\right)\)
\(\Rightarrow BC=\dfrac{\sqrt{244}}{3}=\dfrac{2\sqrt{61}}{3}\left(cm\right)\)
Xét tam giác vuông ABD có \(BD=\sqrt{AB^2+AD^2}=\sqrt{6^2+4^2}=2\sqrt{13}\left(cm\right)\)
Do góc <DAB = <CBD =90 độ và <ABD = < BDC (do AB//CD)
-> Tam giác ADB và BCD đồng dạng
=> AD/BC = DB/CD <-> AD.CD=BC.DB <-> BC.DB = 12.25 =300 (1)
Mặt khác do tam giác DBC vuông tại B nên theo định lý Pitago :
BD^2+BC^2=CD^2
hay BC^2+BD^2 =625 (2)
Từ (1) và (2) ta giải hệ thì có BC, BD:
BD^2+ (300/BD)^2=625 -> BD^4 - 625 BD^2 +900 = 0 -> BD^2 = (625+can( 387025))/2 ( loại nghiệm còn lại do BD là cạnh huyền của tam giác vuông ABD nên BD^2 > AD^2 =144)
-> BD = can( (625+can( 387025))/2 )
-> BC = 3000/BD
Do góc <DAB = <CBD =90 độ và <ABD = < BDC (do AB//CD)
-> Tam giác ADB và BCD đồng dạng
=> AD/BC = DB/CD <-> AD.CD=BC.DB <-> BC.DB = 12.25 =300 (1)
Mặt khác do tam giác DBC vuông tại B nên theo định lý Pitago :
BD^2+BC^2=CD^2
hay BC^2+BD^2 =625 (2)
Từ (1) và (2) ta giải hệ thì có BC, BD:
BD^2+ (300/BD)^2=625 -> BD^4 - 625 BD^2 +900 = 0 -> BD^2 = (625+can( 387025))/2 ( loại nghiệm còn lại do BD là cạnh huyền của tam giác vuông ABD nên BD^2 > AD^2 =144)
-> BD = can( (625+can( 387025))/2 )
-> BC = 3000/BD
~~~~~~~~~~~ai đi ngang qua nhớ để lại k ~~~~~~~~~~~~~
~~~~~~~~~~~~ Chúc bạn sớm kiếm được nhiều điểm hỏi đáp ~~~~~~~~~~~~~~~~~~~
~~~~~~~~~~~ Và chúc các bạn trả lời câu hỏi này kiếm được nhiều k hơn ~~~~~~~~~~~~