Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)gọi gđ của AM và DC là P. gđ của BN và DC là Q
ta có: ^BAD+^ADC=180( và AB//DC)
=>1/2. ^BAD +1/2.^ADC =90
=> ^MAD+^MDA = 90 ( vì AM và DM lần lượt là pg của ^A và ^D)
=> DM \(⊥\)AP
c/ tương tự ta đc: CN \(⊥\)BQ
xét tg ADP có: DM lad pg của ^D (gt) và DM\(⊥\) AP (cmt) => tg ADP cân tại D => DM cx là dg trung tuyến ứng vs AP
=> M là t/đ của AP
c/m tương tự ta đc: tg BQC cân tại C => N là t/đ của BQ
xét hthang ABQP ( vì AB// DC mà P;Q thuộc DC) có:
M là t/đ của AP (cmt) và N là t/đ của BQ (cmt)
=> MN là đg trung bình của hthang ABQP => MN//AB (đpcm)
b) do tg ADP cân tại D (câu a) => AD=PD =d
do tg BQC cân tại C(câu a) => BC=QC=b
ta có MN là đg trung bình của hthang ABQP (câu a) => MN=\(\frac{1}{2}.\left(AB+PQ\right)\)
=>MN=\(\frac{1}{2}.\left(AB+PC+CQ\right)\)
=>MN=\(\frac{1}{2}.\left(AB+DC-PD+QC\right)\)
=>MN=\(\frac{1}{2}.\left(AB+DC-AD+BC\right)\) (vì PD=AD và QC=BC)
=>MN=\(\frac{1}{2}.\left(a+c-d+b\right)\)
a/
\(\widehat{DAE}=\frac{\widehat{A}}{2};\widehat{ADE}=\frac{\widehat{D}}{2}\Rightarrow\widehat{DAE}+\widehat{ADE}=\frac{\widehat{A}+\widehat{D}}{2}\)
Mà \(\widehat{A}+\widehat{D}=180^o\) (Vì AB//CD nên ^A và ^D là 2 góc trong cùng phía nên bù nhau)
\(\Rightarrow\widehat{DAE}+\widehat{ADE}=\frac{\widehat{A}+\widehat{D}}{2}=\frac{180^o}{2}=90^o\)
Xét tg ADE có ^DAE+^ADE=90 => ^AED=180-(^DAE+^ADE)=180-90=90
Chứng minh tương tự cũng có ^BFC=90
b/
Xét tg ADP có DE là phân giác cua ^D
^AED=90 => DE vuông góc với AP
=> DE vùa là phân giác vừa là đường cao => tg ADP cân tại D => AD=DP
Chứng minh tương tự cũng có tg BPC cân tại C => BC=CP
=> AD+BC=DP+CP=DC
c/
Xét tg cân ADP có DE là đường cao => DE là đường trung trực thuộc cạnh AP => AE=PE
Chứng minh tương tự với tg cân BPC => BF=PF
=> EF là đường trung bình của tg ABP (đường thẳng đi qua trung điểm 2 cạnh của 1 tg là đường trung bình)
=> EF//AB//CD
Xét tg ADP có EF//CD và AF=PF => EF là đường trung bình của tg ADP => EF đi qua trung điểm của AD
Chứng minh tương tự cuãng có EF đi qua trung ddiemr của BC
=> EF là đường trung bình của hình thang ABCD