Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: ABCD là hình thang có MN//AB
nên AM/MD=BN/NC
=>AM/4=BN/1=6/5
=>AM=4,8cm
b: ABCD là hình thag có MN//AB//CD
nên BN/NC=AM/MD
=>4/2=AM/3
=>AM=6cm
=>AD=9cm
c; BN/NC=AM/MD=1
=>BN=5cm
Gọi K là giao điểm của AD và BC
F là giao điểm của KM và DC
Có \(AM=2MB\Rightarrow AM=\dfrac{2}{3}AB\)
Do AB//DC. Áp dụng định lý Thales có:
\(\dfrac{AM}{DF}=\dfrac{KM}{KF}\)
\(\dfrac{MB}{FC}=\dfrac{KM}{KF}\)
\(\Rightarrow\dfrac{AM}{DF}=\dfrac{MB}{FC}\)
ADTCDTSBN có: \(\dfrac{AM}{DF}=\dfrac{MB}{FC}=\dfrac{AM+MB}{DF+FC}=\dfrac{AB}{DC}\)
Do đó \(\dfrac{AM}{DF}=\dfrac{AB}{DC}\)
\(\Leftrightarrow\dfrac{\dfrac{2}{3}AB}{DF}=\dfrac{AB}{DC}\Leftrightarrow\dfrac{2AB}{3DF}=\dfrac{AB}{DC}\Leftrightarrow DF=\dfrac{2}{3}DC\) (1)
mà \(DN=2NC\Rightarrow DN=\dfrac{2}{3}DC\) (2)
Do \(N;F\in DC\).Từ (1) và (2) \(\Rightarrow N\equiv F\)
\(\Rightarrow\) K;M;N thẳng hàng
\(\Rightarrow AD;BC;MN\) đồng quy tại K