Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b: XétΔOAB và ΔOCD có
góc OAB=góc OCD
góc AOB=góc COD
=>ΔOAB đồng dạng với ΔOCD
=>\(\dfrac{OA}{OC}=\sqrt{\dfrac{1}{4}}=\dfrac{1}{2}\)
=>\(S_{BOC}=2\cdot S_{BOA}=2\left(cm^2\right)=S_{AOD}\)
=> S ABCD=1+4+2+2=9cm2
Bạn tự kẻ hình nha .
a) Chiều cao hình thang ABCD là :
50 x 2 : 16 = 6,25 ( cm )
Diện tích hình thang ABCD là :
( 9 + 16 ) x 6,25 : 2 = 78,125 (cm2)
b) Diện tích BMC = diện tích AMD vì diện tích tam giác ABC = diện tích tam giác BDA . Vì hai tam giác bằng nhau cùng trừ đi tam giác MBA .
Ta có tam giác BMC = tam giác BAC nên tỉ số \(\frac{MB}{MD}\)\(=\)\(\frac{AM}{MC}\)
a: Xét ΔOBA và ΔODC có
góc OBA=góc ODC
góc BOA=góc DOC
=>ΔOBA đồng dạng với ΔODC
=>OB/OD=OA/OC=AB/CD=1/3
=>S ABO=1/3*S ABC
=>S BOC=2/3*S ABC
b: Kẻ CH vuông góc AB
=>S ABC=1/2*CH*AB
S ABCD=1/2*CH*(AB+CD)
=>S ABC/S ABCD=AB/(AB+CD)
b: Xét ΔOAB và ΔOCD có
góc OAB=góc OCD
góc AOB=góc COD
=>ΔOAB đồng dạng với ΔOCD
=>OA/OC=OB/OD=1/2
=>S OAD=1/2*S OCD=2cm2; S BOC=2cm2
=>S ABCD=1+2+2+4=9cm2
c: AB/CD=OA/OC=1/2