K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Sửa đề: Đáy nhỏ bằng nửa đáy lớn và bằng độ dài hai cạnh bên

AB=CD/2=5cm

BD vuông góc BC

=>góc BDC+góc BCD=90 độ

AD=BC=AB=5cm

AB=AD

=>góc ABD=góc ADB

=>góc ADB=góc BDC

=>DB là phân giác của góc ADC

góc BDC+góc BCD=90 độ

=>1/2*góc BCD+góc BCD=90 độ

=>góc BCD=60 độ

=>góc BDC=30 độ

Xét ΔBDC vuông tại B có BD^2+BC^2=CD^2

=>BD=5*căn 3(cm)

Kẻ BH vuông góc CD

=>BH=BD*BC/CD=5/2*căn 3(cm)

12 tháng 6 2021

 

 

Kẻ AH⊥BCBK⊥CD, đường chéo AC⊥AD

Đặt AH=AB=x⇒AH=x

ΔAHD=ΔBKCΔAHD=ΔBKC (c.h - g.n)

⇒DH=CK=\(\dfrac{10-x}{2}\)

Vậy HC=HK+CK=x+\(\dfrac{10-x}{2}\)=\(\dfrac{x+10}{2}\)

Áp dụng hệ thức lượng trong ΔADC⊥A

AH2=DH.HC⇒x2=\(\dfrac{10-x}{2}\cdot\dfrac{10+x}{2}\)

⇒4x2=100−x2⇒4x2=100−x2

⇒5x2=100⇒5x2=100

⇒x=2√5⇒x=25

Vậy AH=2√5

21 tháng 7 2018

Hình tự vẽ nhé :v

Kẻ AH vuông góc với BC, BK vuông góc với CD, đường chéo AC vuông góc với AD.
Đặt AH = AB = x => AH = x
Tam giác AHD = tam giác BKC (c . h - g . n)

\(\Rightarrow DH=CK=\frac{\left(10-x\right)}{2}\)

\(\Rightarrow CH=HK+CK=x+\frac{\left(10+x\right)}{2}=\frac{\left(x-10\right)}{2}\)

21 tháng 7 2018

Chết :v Làm tiếp nà ><

Áp dụng hệ thức lượng trong tam giác ADC vuông tại A, ta có:

\(AH^2=DH.HC\Rightarrow x^2=\frac{\left(10-x\right)}{2}.\frac{\left(x-10\right)}{2}\)

\(\Rightarrow x=5x^2=20\)

\(\Rightarrow x=2\sqrt{5}\)

Kẻ AH vuông góc với BC, BK vuông góc với CD, đường chéo AC vuông góc với AD.
Đặt AH = AB = x => AH = x
Tam giác AHD = tam giác BKC ( c.h - g.n)
=> DH = CK = (10-x)/2
Vậy HC = Hk + CK = x + (10-x)/2 = (x-10)/2
Áp dụng hệ thức lượng trong tam giác ADC vuông tại A
Có AH^2 = DH.HC => x^2 = (10-x)/2 . (x-10)/2
=> 5x^2 = 20
=> x = 2√ 5
Vậy AH = 2√5

DD
8 tháng 7 2021

Câu 11.12. 

Kẻ đường cao \(AH,BK\).

Do tam giác \(\Delta AHD=\Delta BKC\left(ch-gn\right)\)nên \(DH=BK\).

Đặt \(AB=AH=x\left(cm\right),x>0\).

Suy ra \(DH=\frac{10-x}{2}\left(cm\right)\)

Xét tam giác \(AHD\)vuông tại \(H\):

\(AD^2=AH^2+HD^2=x^2+\left(\frac{10-x}{2}\right)^2\)(định lí Pythagore) 

Xét tam giác \(DAC\)vuông tại \(A\)đường cao \(AH\):

\(AD^2=DH.DC=10.\left(\frac{10-x}{2}\right)\)

Suy ra \(x^2+\left(\frac{10-x}{2}\right)^2=10.\frac{10-x}{2}\)

\(\Leftrightarrow x=2\sqrt{5}\)(vì \(x>0\))

Vậy đường cao của hình thang là \(2\sqrt{5}cm\).

DD
8 tháng 7 2021

Câu 11.11. 

Kẻ \(AE\perp AC,E\in CD\).

Khi đó \(AE//BD,AB//DE\)nên \(ABDE\)là hình bình hành. 

Suy ra \(AE=BD=15\left(cm\right)\).

Kẻ đường cao \(AH\perp CD\)suy ra \(AH=12\left(cm\right)\).

Xét tam giác \(AEC\)vuông tại \(A\)đường cao \(AH\)

\(\frac{1}{AH^2}=\frac{1}{AE^2}+\frac{1}{AC^2}\Leftrightarrow\frac{1}{AC^2}=\frac{1}{AH^2}-\frac{1}{AE^2}=\frac{1}{12^2}-\frac{1}{15^2}=\frac{1}{400}\)

\(\Rightarrow AC=20\left(cm\right)\)

\(S_{ABCD}=\frac{1}{2}AC.BD=\frac{1}{2}.15.20=150\left(cm^2\right)\),

NV
14 tháng 7 2021

Kẻ đường cao góc AE \(\Rightarrow AE=AB\)

Lại có ABCD là hình thang cân \(\Rightarrow CD=AB+2DE=AE+2DE\Rightarrow DE=\dfrac{CD-AE}{2}=\dfrac{10-AE}{2}\) 

\(EC=AB+DE=AE+DE=AE+\dfrac{10-AE}{2}=\dfrac{AE+10}{2}\)

Áp dụng hệ thức lượng trong tam giác vuông ACD có:

\(AE^2=DE.EC\Leftrightarrow AE^2=\left(\dfrac{10-AE}{2}\right)\left(\dfrac{10+AE}{2}\right)\)

\(\Leftrightarrow4AE^2=100-AE^2\Rightarrow AE=2\sqrt{5}\) \(\Rightarrow AB=2\sqrt{5}\)

\(S_{ABCD}=\dfrac{1}{2}AE.\left(AB+CD\right)=\dfrac{1}{2}.2\sqrt{5}.\left(2\sqrt{5}+10\right)=...\)

NV
14 tháng 7 2021

undefined