K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
14 tháng 11 2016
A B C D O
Gọi O là giao điểm của AC và BD.
Ta có \(S_{ABCD}=S_{OAB}+S_{OBC}+S_{OCD}+S_{ODA}=200\)
Mặt khác, ta có : \(S_{OAB}\le\frac{1}{2}OA.OB\) , \(S_{OBC}\le\frac{1}{2}OB.OC\) , \(S_{OCD}\le\frac{1}{2}OC.OD\) , \(S_{OAD}\le\frac{1}{2}OA.OD\)
Suy ra \(S_{ABCD}\le\frac{1}{2}\left(OA.OB+OB.OC+OC.OD+OD.OA\right)\)
\(=\frac{1}{2}\left[OA.\left(OB+OD\right)+OC.\left(OB+OD\right)\right]=\frac{1}{2}AC.BD\)
\(\le\frac{1}{2}BD^2\)
Hay : \(BD^2\ge2S_{ABCD}\Leftrightarrow BD^2\ge400\Leftrightarrow BD\ge20\)
Vậy giá trị nhỏ nhất của đường chéo BD bằng 20 khi \(\hept{\begin{cases}BD=AC\\BD\perp AC\end{cases}}\)