Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\dfrac{\text{∠}A}{6}=\dfrac{\text{∠}B}{5}=\dfrac{\text{∠}C}{4}\) = k (k > 0)
⇒ ∠A = 6k; ∠B = 5k; ∠C = 4k
Do AB//CD ⇒ ∠A + ∠D = ∠B + ∠C = 180°
⇒ 6k + ∠D = 5k + 4k
⇒ ∠D = 3k
Lại có: ABCD là hình thang
⇒ ∠A + ∠B + ∠C + ∠D = 360°
⇒ 6k + 5k + 4k + 3k = 360°
⇒ 18k = 360°
⇒ k = 20°
⇒ ∠A = 120°; ∠B = 100°; ∠C = 80°; ∠D = 60°
Bafi1: Do AB // CD ( GT )
⇒ˆA+ˆC=180o
⇒2ˆC+ˆC=180o
⇒3ˆC=180o
⇒ˆC=60o
⇒ˆA=60o.2=120o
Do ABCD là hình thang cân
⇒ˆC=ˆD
Mà ˆC=60o
⇒ˆD=60o
AB // CD ⇒ˆD+ˆB=180o
⇒ˆB=180o−60o=120o
Vậy ˆA=ˆB=120o;ˆC=ˆD=60o
Bài 2:
Ta có; AB//CD
\(\Rightarrow\)góc BAD+ góc ADC= \(180^o\)
^A=3. ^D \(\Rightarrow\)\(\dfrac{A}{3}\)=^D
Áp dụng tính chất của dãy tỉ số bằng nhau:
\(\dfrac{A}{3}=\dfrac{D}{1}=\dfrac{A+D}{3+1}=\dfrac{180^O}{4}=45^O\)
\(\Rightarrow\)^A= \(135^O\)
\(\Rightarrow\)^D=\(45^o\)
\(\Rightarrow B=A=135^o\)
\(\Rightarrow C=D=45^o\)
Vì ABCD là hình thang cân
=> \(\hept{\begin{cases}\widehat{C}=\widehat{D}\\\widehat{B}=\widehat{A}\end{cases}}\)
Mà \(\widehat{A}=2\widehat{C}\)
=> \(\widehat{A}=2\widehat{D}\)
Vì AB // CD
=> \(\widehat{A}+\widehat{D}=180^o\)
Thay \(\widehat{A}=2\widehat{D}\)
=> \(3\widehat{D}=180^o\)
=> \(\widehat{D}=180^o:3=60^o\)
và \(\widehat{A}=2.\widehat{D}=2.60^o=120^o\)
Vì \(\widehat{C}=\widehat{D}\Rightarrow\widehat{C}=60^o\)
Vì \(\widehat{B}=\widehat{A}\Rightarrow\widehat{B}=120^o\)
Vậy \(\widehat{A}=120^o;\widehat{B}=120^o;\widehat{C}=60^o;\widehat{D}=60^o\)
Câu 1:
Gọi mỗi đinh của tứ giác là A, B, C, D. Các góc ngoài tương ứng lần lượt là A1, B1, C1, D1
Ta có: A+ B+ C+ D+ A1+ B1+ C1+ D1= 720 độ
Ma A+ B+ C+ D= 360 độ nên A1+ B1+ C1+ D1= 720 - 360= 360 độ
\(a:b:c=6:5:4\Leftrightarrow\frac{a}{6}=\frac{b}{5}=\frac{c}{4}\)
vì là hình thang góc b+c=180
áp dụng t/c của dãy tỉ số = nhau ta có:
\(\frac{b}{5}=\frac{c}{4}=\frac{b+c}{5+4}=\frac{180}{9}=20\Leftrightarrow\frac{a}{6}=\frac{b}{5}=\frac{c}{4}=20\)
a/6=20 <=> a=120 độ
b/5=20 => b=100 độ
c/4=20 => c=80 độ
d=360-a-b-c=360-120-100-80=60