Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Dảnh wá nên lm :))
A C B D E F I K
Xét hinh thang ABCD có EA=ED ; FB=FC => EF là đường trung bình => EF//AB
Xét tam giác ADB có EA=ED; BI=ID > EI là đường trung bình => EI // AB (1)
Xét tam giác ABC có KA=KC; BF=FC => FK là đường trung bình => FK // AB (2)
Ta lại có IK // AB (EF//AB) (3)
Từ (1) ; (2); (3) => IK//EI//FK Nên theo tiên đề Ơclit thì E;F;I;K thẳng hằng (đpcm)
Gọi M,N,P lần lượt là trung điểm các cạnh BF,AF,AB
Áp dụng tính chất đường trung bình suy ra được:
K,N,M thẳng hàng (//BE)
J,P,M thẳng hàng (//FD)
I,P,N thẳng hàng (//CF)
Áp dụng định lý Menalaus vào ∆MNP với các điểm I,J,K lần lượt thuộc phần kéo dài của các cạnh PN,PM,MN cho thấy:Khi và chỉ khi KN/KM×JM/JP×IP/IN=1 (*) thì suy ra đpcm.
Thật vậy:
KN/KM=AE/EB (1)
JM/JP=FD/AD (2)
IP/IN=BC/FC (3) (cái này là do tính chất đường trung bình đó bạn. Khi bạn biến đổi KN và KM thì lần lượt ra (1/2)×AE và (1/2)×BE. Khi lập tỉ số KN/KM thì bạn gạch bỏ 1/2 là ra AE/BE. Chứng minh tương tự với các tỉ số kia. Mình nhớ có một tính chất nói về cái này mà mình quên tên nó rồi hic.)
Áp dụng định lý Menalaus vào ∆ABF với các điểm C,D,E lần lượt thuộc phần kéo dài của các cạnh BF,AF,AB:
AE/EB×FD/AD×BC/FC=1 (4)
Từ (1),(2),(3) và (4) ==> KN/KM×JM/JP×IP/IN=1.
==>I,J,K thẳng hàng (theo định lý Menalaus trong ∆MNP với các điểm I,J,K lần lượt thuộc phần kéo dài của các cạnh PN,PM,MN).
Vậy I,J,K thẳng hàng (đpcm).
a) Ta có: E là trung điểm của AD
F là trung điểm của BC
AB//CD
=) EF//DC//AB (1)
Xét tam giác ADB có AE=ED =) EK là đường trung bình của tam giác ADB =) EK//AB(2)
Xét tam giác BDC có BF=FC =) FI là đường trung bình của tam giác BDC =) FI//AB (3)
Từ (1) (2) (3) =) EK,FI,EF//AB
=) E;F;K thẳng hàng