Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có:
+) M là trung điểm của AD và MN // CD
MN là đường trung bình của hình thang ABCD
N là trung điểm của BC
+) M là trung điểm của AB và ME // AB
ME là đường trung...
S D N C B A E M P F a a/2 a s a
a,Qua P kẻ PE//AB,\(F\in SA\)
Trong mp (SAB) , PE//AB,\(PE=\frac{1}{2}AB\)
mà AB//CD ,AB=CD
\(\Rightarrow PE//CD,PE=\frac{1}{2}DN\)
4 điểm P,F,C,D đồng phẳng
=>FPND là hbh
\(\Rightarrow PN//FD\)mà \(FD\subset\left(SAD\right)\)
\(\Rightarrow PN//\left(SAD\right)\)
b,\(MN//BC\Rightarrow\left(MNP\right)//BC\)
\(\hept{\begin{cases}P=\left(MNP\right)\Omega\left(SBC\right)\\\left(MNP\right)//BC\end{cases}}\)
=> giao tuyến của (MNP) với (SBC) là PE//BC ,\(E\in SC\)
=> Thiết diện là PENM M P E N a/2 a a a/4 a
\(PE=\frac{1}{2}BC=\frac{a}{2}\)
\(PM=\frac{1}{2}SA=a\)
\(MN=a\)
\(EM=\frac{1}{2}SD=a\)
\(S_{MNPE}=\left(a+\frac{a}{2}\right)\sqrt{a^2-\frac{a^2}{16}}\)
=\(\frac{3\sqrt{15}^2a^2}{16}\)
P/s hình hơi xấu
theo tính chất đường phân giác ta cóANBN =ACBC ⇔AN+BNBN =AC+BCBC
BN=AB.BCAC+BC .tương tự suy ra CM=AC.BCAB+BC
giả sử AB≥AC⇒BN≥CMtheo kết quả vừa tính được
có AB≥AC⇒^B≤^C⇔{
^B1≤^C1 |
^B2≤^C2 |
chứng minh được tam giác CND cân theo giả thiết (BNDM là hình bình hành )^D12=^C23
mà ^B2=^D1≤^C2⇒^D2≥^C3⇒CM≥DM=BN
⇒{
BN≥CM |
BN≤CM |
⇒BN=CM⇒AB=AC⇒tam giác ABC cân
trường hợp AB≤AC làm tương tự
dđây mà là câu hỏi lớp 1 hả hồ đức nam
dđây mà là câu hỏi lớp 1 hả hồ đức nam
dđây mà là câu hỏi lớp 1 hả hồ đức nam ???????????
lớp 8 đấy bạn ạ , giải hộ mình cái !!!!