\(\widehat{A}=\widehat{CBD}\). CM \(...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Xét ΔABD và ΔBDC có 

\(\widehat{ABD}=\widehat{BDC}\)

\(\widehat{A}=\widehat{CBD}\)

Do đó: ΔABD\(\sim\)ΔBDC

Suy ra: BD/DC=AB/BD

hay \(BD^2=AB\cdot CD\)

22 tháng 8 2019

BẠn tự vẽ hình nhé

Ta có: AC là cạnh đối diện góc D

           BD là cạnh đối diện góc C

Mà góc C < góc D cmt

=> BD < AC  định lý

29 tháng 12 2017

chịu thôi

6 tháng 9 2020

Vì AB // CD nên \(\hept{\begin{cases}\widehat{A}+\widehat{D}=180^0\\\widehat{B}+\widehat{C}=180^0\end{cases}}\)(định lí hình thang)

Mà \(\widehat{A}=5\widehat{D}\)=> \(\widehat{5D}+\widehat{D}=180^0\)=> \(6\widehat{D}=180^0\)=> \(\widehat{D}=30^0\)(1)

Thay (1) vào \(\widehat{A}=5\widehat{D}\)ta có :

\(\widehat{A}=5\cdot30^0=150^0\)

Lại có : \(\widehat{B}=4\widehat{C}\)

=> \(4\widehat{C}+\widehat{C}=180^0\)

=> \(5\widehat{C}=180^0\)

=> \(\widehat{C}=36^0\)(2)

Thay (2) vào \(\widehat{B}=4\widehat{C}\)ta có :

=> \(\widehat{B}=4\cdot36^0=144^0\)

Vậy : ^A = 1500 , ^B = 1440 , ^C = 360 , ^D = 300