Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét ΔABD và ΔBDC có
\(\widehat{ABD}=\widehat{BDC}\)
\(\widehat{A}=\widehat{CBD}\)
Do đó: ΔABD\(\sim\)ΔBDC
Suy ra: BD/DC=AB/BD
hay \(BD^2=AB\cdot CD\)
BẠn tự vẽ hình nhé
Ta có: AC là cạnh đối diện góc D
BD là cạnh đối diện góc C
Mà góc C < góc D cmt
=> BD < AC định lý
Vì AB // CD nên \(\hept{\begin{cases}\widehat{A}+\widehat{D}=180^0\\\widehat{B}+\widehat{C}=180^0\end{cases}}\)(định lí hình thang)
Mà \(\widehat{A}=5\widehat{D}\)=> \(\widehat{5D}+\widehat{D}=180^0\)=> \(6\widehat{D}=180^0\)=> \(\widehat{D}=30^0\)(1)
Thay (1) vào \(\widehat{A}=5\widehat{D}\)ta có :
\(\widehat{A}=5\cdot30^0=150^0\)
Lại có : \(\widehat{B}=4\widehat{C}\)
=> \(4\widehat{C}+\widehat{C}=180^0\)
=> \(5\widehat{C}=180^0\)
=> \(\widehat{C}=36^0\)(2)
Thay (2) vào \(\widehat{B}=4\widehat{C}\)ta có :
=> \(\widehat{B}=4\cdot36^0=144^0\)
Vậy : ^A = 1500 , ^B = 1440 , ^C = 360 , ^D = 300