Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì ABCD là hình thang cân nên \(\widehat{A1} = \widehat{B2}\), AC=BD.
Ta có : \(\widehat{A1}+\widehat{A2}=180 độ (kề bù) \widehat{B1}+\widehat{B2}=180 độ\)
mà \(\widehat{A_1}=\widehat{B_2} =>\widehat{A_2}=\widehat{B_1}\) => tam giác IAB cân tại I
Vì M là trung điểm của AM=MB=> IM là đường trung tuyến
Vì tam giác IAB cân nên IM đồng thời là đường đường trung trực, đường phân giác.
=>IM vuông góc AB(1)
Xét tam giác IOA và tam giác IOB:
IA=IB(tam giác IAB cân)
\(\widehat{I_1}=\widehat{I_2}\)(IM là phân giác)
IO chung
Do đó: tam giác IOA = tam giác IOB (cgc)
=> IA=IB(2 cạnh tương ứng)
OA=OB(2 cạnh tương ứng)
nên I,O thuộc đường trung trực của AB
=> IO vuông góc AB(2)
Từ (1) và (2) => I,O,M thẳng hàng (đccm)
giup mnh vs