Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
có m là trđ của cd rồi lại còn ef cắt bc tại m
a, xét tam giác DEM có AB // DM (gt) => ME/AE = DM/AB (ddl)
xét tam giác MFC có MC // AB (gt) => MF/FB = CM/AB (đl)
có DM = CM do M là trung điểm của CD (gt)
=> ME/AE = MF/FB xét tam giác ABM
=> EF // AB (đl)
b, gọi EF cắt AD;BC lần lượt tại P và Q
xét tam giác ABD có PE // AB => PE/AB = DE/DB (đl)
xét tam giác DEM có DM // AB => DE/DB = ME/MA (đl)
xét tam giác ABM có EF // AB => EF/AB = ME/MA (đl)
=> PE/AB = EF/AB
=> PE = EF
tương tự cm được FQ = EF
=> PE = EF = FQ
c, Xét tam giác DAB có PE // AB => PE/AB = DP/DA (đl)
xét tam giác ADM có PE // DM => PE/DM = AP/AD (đl)
=> PE/AB + PE/DM = DP/AD + AP/AD
=> PE(1/AB + 1/DM) = 1 (1)
xét tam giác AMB có EF // AB => EF/AB = MF/MB (đl)
xét tam giác BDM có EF // DM => EF/DM = BF/BM (đl)
=> EF/AB + EF/DM = MF/MB + BF/BM
=> EF(1/AB + 1/DM) = 1 (2)
xét tam giác ABC có FQ // AB => FQ/AB = CQ/BC (đl)
xét tam giác BMC có FQ // MC => FQ/MC = BQ/BC (đl)
=> FQ/AB + FQ/MC = CQ/BC + BQ/BC
có MC = DM (câu a)
=> FQ(1/AB + 1/DM) = 1 (3)
(1)(2)(3) => (1/AB + 1/DM)(PE + EF + FQ) = 3
=> PQ(1/AB + 1/DM) = 3
DM = 1/2 CD = 6
đến đây thay vào là ok
-OM cắt DC tại N'.
\(\dfrac{AM}{DN}=\dfrac{MB}{NC}=\dfrac{AM+MB}{DN+BC}=\dfrac{AB}{DC}\)
-Xét △ODN' có: AM//DN'.
\(\Rightarrow\dfrac{AM}{DN'}=\dfrac{OM}{MN'}\) (hệ quả định lí Ta-let) (1)
-Xét △OCN' có: BM//CN'.
\(\Rightarrow\dfrac{BM}{CN'}=\dfrac{OM}{MN'}\) (định lí Ta-let) (2)
-Từ (1) và (2) suy ra:
\(\dfrac{AM}{DN'}=\dfrac{BM}{CN'}=\dfrac{AM+BM}{CN'+DN'}=\dfrac{AB}{CD}\)
\(\Rightarrow\dfrac{AM}{CN'}=\dfrac{BM}{DN'}=\dfrac{AM}{CN}=\dfrac{BM}{DN}\)
\(\Rightarrow CN=CN';DN=DN'\)
\(\Rightarrow N\equiv N'\)
-Vậy MN đi qua điểm O.
a)Xét hình bình hành ABED có:
AB=DE
AB//DE(doAB//DC)
=>tứ giác ABED là hình bình hàXetnh vì có 2 cạnh đối // và = nhau(dấu hiệu nhận biết thứ 3)
b)Có AB//DE=>gócBAE=góc AED(2 góc so le trong )
Xét tam giác ANI và tam giác EMI có:
AI=IE(là trung điểm AI)
góc BAE=gócAED(cmt)
góc AIN=gócEIM(2 góc đối đỉnh)
=>tam giác ANI=tam giác EIM(g.c.g)
=>AN=ME(2 cạnh tương ứng)
có AB=DE
AN=ME
=>AB-AN=DE-ME
=>NB=DM
mà DM=MC(do M là trung điểm DC)
=>NB=MC
Lại có NB//MC (do AB//DC)
Xét tứ giác NBMC có :
NB=MC(cmt)
NB//MC(cmt)
=>tứ giác NBMC là hình bình hành vì có 2 cạnh đối //và= nhau(dhnb thứ 3)
=>NM=BC
c)
Trước tiên kẻ AM cắt CD tại I
Ta xét tam giác AMB và IMD
Hai tam giác đó bằng nhau vì MB=MD (gt) và góc AMB=IMD (đđ) và góc ABM=IDM (so le trong vì AB//CD)
Vì vậy mà AB=ID và MA=MI
Xét tam giác AIC có MA=MI và NA=NC nên MN là đường trung bình của tam giác AIC nên MN//CI và MN=(1/2)CI
Do CI=CD-ID cũng như CI=CD-AB (do AB=ID cmt) và MN=(1/2)CI
nên MN=(1/2)(CD-AB)