K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét tứ giác ABCM có 

AB//CM

AB=CM

Do đó: ABCM là hình bình hành

Xét tứ giác ABMD có 

AB//MD

AB=MD

Do đó: ABMD là hình bình hành

mà AB=AD

nên ABMD là hình thoi

mà \(\widehat{BAD}=90^0\)

nên ABMD là hình vuông

Ko có cái quần què gì để gửi nên viết ra đây các OLMERS  đừng trả lời nhé plzko trả lời ra dưới câu hỏi mình nhé các OLMERS. Ai trả lời dưới câu hỏi là coi như không biết đọc chữ đáy nhé :))Bài 1: Cho tứ giác ABCD có BC=AD và BC không song song với AD. Gọi M,N,P,Q,E,F lần lượt là trung điểm của các đoạn thẳng AB,BC,CA,DA,AC,BD.a) Chứng minh tứ giác MEPF là hình thoib) Chứng minh các đoạn...
Đọc tiếp

Ko có cái quần què gì để gửi nên viết ra đây các OLMERS  đừng trả lời nhé plz

ko trả lời ra dưới câu hỏi mình nhé các OLMERS. Ai trả lời dưới câu hỏi là coi như không biết đọc chữ đáy nhé :))

Bài 1: Cho tứ giác ABCD có BC=AD và BC không song song với AD. Gọi M,N,P,Q,E,F lần lượt là trung điểm của các đoạn thẳng AB,BC,CA,DA,AC,BD.

a) Chứng minh tứ giác MEPF là hình thoi

b) Chứng minh các đoạn thẳng MP,NQ,EF cùng cắt nhau tại một điểm 

c) Tìm thêm điều kiện của tứ giác ABCD để N,E,F,Q thẳng hàng

Bài 2: Cho tam giác ABC vuông tại A ( AB<AC ),M là trung điểm của BC,từ M kẻ đường thẳng song song với AC,AB lần lượt cắt AB tại E, cắt AC tại F.

a) Chứng minh EFCB là hình thang

b) Chứng minh AEMF là hình chữ nhật

c) Gọi O là trung điểm của AM.Chứng minh E và F đối xứng qua O

d) Gọi D là trung điểm của MC. Chứng minh OMDF là hình thoi.

Bài 3:Cho hình bình hành ABCD , trên AC lấy 2 điểm M và N sao cho AM=CN

a) Tứ giác BNDM là hình gì?

b) hình bình hành ABCD phải thêm điều kiện gì? Thì BNDM là hình thoi

c) BM cắt AD tại K . Xác định vị trí của M để K là trung điểm của AD.

d) Hình bình hành ABCD thỏa mãn cả 2 điều kiện ở b,c thì phải thêm điều kiện gì để BNDM là hình vuông

 

0
8 tháng 11 2019

a. Ta có   D đối xứng với M qua N (gt)

           => MN = ND 

           => N là trung điểm của MD

Xét tứ giác ADCM , ta có:

           N là trung điểm của AC (gt)

           N là trung điểm của MD (cmt)

 => ADCM là hình bình hành (dhnb)

Mà AM là đường cao của tam giác ABC

 => AM vuông góc với BC => Góc M = 90o 

Xét hình bình hành ADCM , ta có: Góc M = 900

 => ADCM là hình chữ nhật (dhnb)

Bài 1: Cho tứ giác ABCD có BC = AD và BC không song song với AD, gọi M, N,P, Q, E, F lần lượt là trung điểm của các đoạn thẳng AB, BC, CD, DA, AC, BD.a) Chứng minh tứ giác MEPF là hình thoi.b) Chứng minh các đoạn thẳng MP, NQ, EF cùng cắt nhau tại một điểm.c) Tìm thêm điều kiện của tứ giác ABCD để N, E, F, Q thẳng hàngBài 2: Cho tam giác ABC vuông tại A (AB&lt;AC), M là trung điểm BC, từ M kẻđường thẳng...
Đọc tiếp

Bài 1: Cho tứ giác ABCD có BC = AD và BC không song song với AD, gọi M, N,
P, Q, E, F lần lượt là trung điểm của các đoạn thẳng AB, BC, CD, DA, AC, BD.
a) Chứng minh tứ giác MEPF là hình thoi.
b) Chứng minh các đoạn thẳng MP, NQ, EF cùng cắt nhau tại một điểm.
c) Tìm thêm điều kiện của tứ giác ABCD để N, E, F, Q thẳng hàng
Bài 2: Cho tam giác ABC vuông tại A (AB&lt;AC), M là trung điểm BC, từ M kẻ
đường thẳng song song với AC, AB lần lượt cắt AB tạt E, cắt AC tại F
a) Chứng minh EFCB là hình thang
b) Chứng minh AEMF là hình chữ nhật
c) Gọi O là trung điểm AM. Chứng minh: E và F đối xứng qua O.
d) Gọi D là trung điểm MC. Chứng minh: OMDF là hình thoi
Bài 3: Cho tam giác ABC có AB&lt;AC. Gọi M, N, P lần lượt là trung điểm của AB,
AC, BC. Vẽ đường cao AH của tam giác ABC. Tứ giác HMNP là hình gì.
Bài 4: Cho tứ giác ABCD có góc DAB = góc BCD = 120 0 . Tính số đo của hai góc
còn lại để ABCD là hình bình hành.
Bài 5: Cho hình bình hành ABCD. Trên đưởng chéo AC chọn hai điểm E và F sao
cho AE=EF=FC.
a) Tứ giác BEDF là hình gì?
b) Chứng minh CFDAEB .
c) Chứng minh CFBEAD .
Bài 6: Cho tam giác ABC cân tại A, đường cao AD. Gọi E là điểm đối xứng với D qua
trung điểm M của AC.
a) Tứ giác ADCE là hình gì? Vì sao?
b) Tứ giác ABDM là hình gì? Vì sao?
c) Tam giác ABC có thêm điều kiện gì thì ADCE là hình vuông?
d) Tam giác ABC có thêm điều kiện gì thì ABDM là hình thang cân?

5
2 tháng 3 2020

Bài 1:

A B C D M N P Q E F

a) Xét tam giác ABC có M là trung điểm của AB (gt) ,E là trung điểm của AC (gt)

\(\Rightarrow ME\)là đường trung bình tam giác ABC

\(\Rightarrow ME=\frac{1}{2}BC\left(tc\right)\left(1\right)\)

Xét tam giác ADC có E là trung điểm của AC (gt) ,P là trung điểm của DC (gt)

\(\Rightarrow PE\)là đường trung bình của tam giác ADC

\(\Rightarrow PE=\frac{1}{2}AD\left(tc\right)\left(2\right)\)

mà \(AD=BC\left(gt\right)\left(3\right)\)

Từ (1) , (2) và (3) \(\Rightarrow EM=PE\)

CMTT: \(PE=FP,FM=ME\)

\(\Rightarrow ME=EP=PF=FM\)

Xét tứ giác MEPF có:

\(ME=EP=PF=FM\left(cmt\right)\)

\(\Rightarrow MEPF\)là hình thoi ( dhnb)

 b) Vì \(MEPF\)là hình thoi (cmt)

\(\Rightarrow FE\)giao với MP tại trung điểm mỗi đường (tc)  (4)

Xét tam giác ADB có M là trung điểm của AB(gt) ,Q là trung điểm của AD (gt)

\(\Rightarrow MQ\)là đường trung bình của tam giác ADB

\(\Rightarrow MQ//DB,MQ=\frac{1}{2}DB\left(tc\right)\left(5\right)\)

Xét tam giác BDC có N là trung điểm của BC(gt) , P là trung điểm của DC(gt)

\(\Rightarrow NP\)là đường trung bình của tam giác BDC

\(\Rightarrow NP//DB,NP=\frac{1}{2}DB\left(tc\right)\left(6\right)\)

Từ (5) và (6) \(\Rightarrow MQ//PN,MQ=PN\)

Xét tứ giác MQPN có \(\Rightarrow MQ//PN,MQ=PN\)

\(\Rightarrow MQPN\)là hình bình hành (dhnb)

\(\Rightarrow MP\)giao QN tại trung điểm mỗi đường (tc) (7)

Từ (4) và (7) \(\Rightarrow MP,NQ,EF\)cắt nhau tại một điểm 

c) Xét tam giác ABD có Q là trung điểm của AD (gt), F là trung điểm của BD(gt)

\(\Rightarrow QF\)là đường trung bình của tam giác ADB

\(\Rightarrow QF//AB\left(8\right)\)

CMTT: \(FN//CD\)và \(EN//AB\)

Mà Q,F,E,N thẳng hàng 

\(\Rightarrow AB//CD\)

Vậy để Q,F,E,N thẳng hàng thì tứ giác ABCD phải thêm điều kiện  \(AB//CD\)


 

2 tháng 3 2020

Tối về mình làm nốt  nhé giờ mình có việc 

Câu 1: (3,5 điểm). Cho tam giác ABC vuông tại A (AB < AC). Gọi M là trung điểm của BC, từ M kẻ MD ⊥ AB tại D và ME ⊥ AC tại E (D ∈ AB, E ∈ AC)a) Chứng minh: Tứ giác ADME là hình chữ nhật.b) Gọi F là điểm đối xưng của điểm M qua điểm E.Chứng minh: tứ giác AMCF là hình thoi.c) Gọi I, K lần lượt là trung điểm của BM và MC.CMR: DI + EK = AMd) Gọi N là giao điểm của AM và BE. Chứng minh: AF = 3MNBài 2:...
Đọc tiếp

Câu 1: (3,5 điểm). Cho tam giác ABC vuông tại A (AB < AC). Gọi M là trung điểm của BC, từ M kẻ MD ⊥ AB tại D và ME ⊥ AC tại E (D ∈ AB, E ∈ AC)

a) Chứng minh: Tứ giác ADME là hình chữ nhật.

b) Gọi F là điểm đối xưng của điểm M qua điểm E.

Chứng minh: tứ giác AMCF là hình thoi.

c) Gọi I, K lần lượt là trung điểm của BM và MC.

CMR: DI + EK = AM

d) Gọi N là giao điểm của AM và BE. Chứng minh: AF = 3MN

Bài 2: (3,5 điểm) Cho ∆ABC nhọn. Gọi M là trung điểm của AB. Đường thẳng qua M và song song với BC cắt AC tại N, đường thẳng qua B và song song với AC cắt đường thẳng MN tại D.

a/ Chứng minh tứ giác BCND là hình bình hành

b/ Vẽ đường cao AH của ∆ABC. Lấy điểm K sao cho N là trung điểm của HK.

CMR: tứ giác AHCK là hình chữ nhật.

c/ Chứng minh tức giác BHND là hình thang cân.

d/ Đường thẳng qua N và song song với HM cắt đường thẳng DK tại E. Chứng minh DE = 2EK

 

 

 

                                                         

 

 

 

1
7 tháng 7 2016

Câu c: Ta sẽ cm góc BDN = góc HND ( vì cùng bằng góc AND)

Thật vậy:  BDN  = AND slt

                    HND = AND (dễ cm tam giác ANH cân tại N, AH dễ cm là đường cao, nên đồng thời là phân giác)

 Þtứ giác BHND là hình thang cân

Câu d: Gọi I là giao điểm của HM và DK

Xét tứ giác ADBN có

BD = AN  (=HN vì BHND là hình thang cânÞ BD = HN, AHCK là hcn ÞAN = HN)

suy ra  Tứ giác ADBN là hbh ÞM là trung điểm của DN suy ra MD = MN

Xét tam giác EDN có MI song song EN, MD = MN (cmt)suy ra  MI là đường trung bình hay ID = IE (1)

Tương tự xét tam giác KIH có NE là đường trung bình hay EK = IE (2)

Từ (1) và (2) suy ra  ID = IE = EK. Vậy DE = 2EK

mình cần gấp nhưng ai làm dk bài nào thì làm nha, có hình càng tốtBài 1: Tam giác ABC vuông cân taij A. M là trung điểm BC. Qua M kẻ các dường thảng song song với AC, AB Cát AB, AC tại E và F. a, chứng minh AEMF là hình chữ nhật ,b, O là trung điểm AM, D là trung Điểm MC. Chứng Minh OMDF là Hình Thoi.C, biết AM 4cm. tính diện tích AEMFBài 2: Cho hình bình hành ABCD, có AB=2AD. Gọi E, F lần lượt là trung điểm của...
Đọc tiếp

mình cần gấp nhưng ai làm dk bài nào thì làm nha, có hình càng tốt

Bài 1: Tam giác ABC vuông cân taij A. M là trung điểm BC. Qua M kẻ các dường thảng song song với AC, AB Cát AB, AC tại E và F.

a, chứng minh AEMF là hình chữ nhật ,

b, O là trung điểm AM, D là trung Điểm MC. Chứng Minh OMDF là Hình Thoi.

C, biết AM 4cm. tính diện tích AEMF

Bài 2: Cho hình bình hành ABCD, có AB=2AD. Gọi E, F lần lượt là trung điểm của AB, CD

a, Cm AEFD là Hình thoi

b, AF cát DE tại M, BF cắt CE tại N. CM MENF là hình chữ nhật

c, Chứng minh MN, FE, AC, BD đồng quy

Bài 4: Hình chữ nhật ABCD, O là giao ddiemr 2 đường chéo. E đối xứng vs D qua C

a, Cm ABEC là hình bình hành

b, F là trung điểm BE. Tứ giác BDCF là hình gì? vì sao?

c, Cm tứ giác DOFE là Hình thang cân

d, hình chữ nhật ABCD cân để BOCF là hình vuông

2
24 tháng 12 2015

DÀI QUÁ LÀM XONG CHẮC VÀO BỆNH VIỆN

25 tháng 12 2015

câu 1

a) ta có MF // AB,BA vuông góc AC=> MF vuông góc AC=> MFA=90 độ

tương tự góc EAF=90 độ

tứ giác AEMF có góc EAF=MFA=AEM =90 độ=> tứ giác AEMF là hcn

b) tam giác ABC co AM la T tuyến ung voi canh huyền BC=> AM=1/2BC,MC=1/2BC=> AM=MC=> tam giác AMC cân tai M

=> MF là T tuyến => Flà tđ cua AC

xét tam giác MAC=> DF là đtb cua tam giác AMC => DF//AM=> DF//OM (1)

tương tự OF // MD (2) 

từ (1),(2) => T giác OMDF là hbh (3)

ta lai co OM=1/2AM,MD=1/2MC mà AM=MC => OM=DM (4)

từ (3),(4) => T giác OMDF la hình thoi

c) ta có tam giác ABC vuông can tai A=> góc BCA=45 độ

mà góc BCA= MAC=góc MAC =45 dộ=> tam giác MFA vuông can tai F

áp dung Pitago => AF=2 căn 2 cm, ma AF=FM=> AF=FM=2 căn 2 cm 

diện tích AEMF=AF.FM=2cAn 2.2can 2=8 cm vuông

Bài 2:

a: Xet ΔABC có AD/AB=AF/AC

nen DF//BC và DF=1/2BC

=>BDFC là hình thang

mà góc B=góc C

nên BDFC là hình thang cân

b Xet ΔABC có

CE/CB=CF/CA

nên EF//AB và EF=AB/2

=>EF//AD và EF=AD
=>ADEF là hình bình hành

mà AD=AF

nen ADEF là hình thoi

c: Để ADEF là hình vuông thì góc BAC=90 độ

a) Xét tứ giác AKCH có : 

AD = DC ( D là trung điểm AC )

HD = DK ( K là điểm đối xứng của H qua D )

=> AKCH là hình bình hành (1)

Xét ∆ vuông AHC có : 

HD là trung truyến 

=> HD = AD = DC 

Mà HD + DK = HK 

AD + DC = AC 

=> HK = AC (2)

Từ (1) và (2) => AKCH là hình chữ nhật 

b) Xét ∆ABC có : 

E là trung điểm AB 

D là trung điểm BC 

=> ED là đường trung bình ∆ABC 

=> ED //BC

Xét ∆ABC có : 

E là trung điểm AC

I là trung điểm BC

=> EI là đường trung bình ∆ABC 

=> EI//AC , EI = \(\frac{1}{2}AC\)

Xét tứ giác EDCI có :

ED// IC ( I \(\in\)BC )

EI//DC ( D \(\in\)AC)

=> EDCI là hình bình hành 

c) Vì ED //HI ( H , I \(\in\)BC )

=> EDIH là hình thang

Vì EI = \(\frac{1}{2}AC\)(cmt)

Mà HD = AD = DC (cmt)

=> HD = \(\frac{1}{2}AC\) 

=> EI = HD 

Mà EDIH là hình thang 

=> EDIH là hình thang cân ( 2 đường chéo bằng nhau )

10 tháng 5 2020

Phần d có ai làm được không ạ?