Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Gọi AHlà chiều cao của tam giác ABC.
Vì Scủa tam giác được tính bằng công thức\(s=\frac{a.h}{2}\)=>\(h=\frac{s.2}{a}\)=>\(h=\frac{360.2}{40}\)=18 cm
Vậy chiều cao của tam giác ABC đc hạ từ A là cm.
b)
Nối A với O.
Ta có: SABN = 1/3 SBNC nên đường cao kẻ từ A và C xuống NB có tỉ lệ 1/3
Suy ra SABO = 1/3 SBOC (chung đáy OB)
Tương tự:
SAMC = 1/2SBMC nên dường cao kẻ từ A và B xuống MC có tỉ lệ 1/2
Suy ra SAOC = 1/2 SBOC (chung đáy OC)
Từ đó ta có: SAOC + SAOB = (1/3+1/2)SBOC = 5/6 SBOC
SAOC + SAOB có 5 phần thì SBOC có 6 phần và SABC có (5+6) 11 phần
Vậy: AOCB = 6/11 SABC
mk trả lời đầu tiên nhớ k cho mk nha!
lộn rồi!
Ta có:
MN = 1/2 AB - 1/3 AB = 1/6 AB
Xét tam giác NMD và MCD có chiều cao = chiều rộng hình chữ nhật mà đáy NM = 1/6 CD => S_NMD = 1/6 S_MCD. Mà S_MCD = 360 : 2 = 180 (cm2) => S_NMD = 180 : 6 = 30 (cm2)
Mặt khác 2 tam giác này chugn đáy MD => Chiều cao tam giác NMD đỉnh N = 1/6 chiều cao tam giác MCD đỉnh C
Xét tam giác NMD và NMC chung đáy NM chiều cao bằng nhau => S_NMD = S_NMC = 30 (cm2)
Xét tam giác NMO và MCO có chung đáy MO chiều cao tam giác NMO = 1/6 chiều cao MCO => S_NMO = 1/6 S_MCO
Vậy diện tích NMO là : 30 : (1 + 6) = 30/7 (cm2)
k nha!
Bài 1:
Ta có M là trung điểm BC nên \(BC=2BM=6(cm);CM=BM=3(cm)\)
\(S_{ABM}=\dfrac{1}{2}AH.BM=6(cm^2)\\ S_{ABC}=\dfrac{1}{2}AH.BC=12(cm^2)\)
Bài 2: Nếu giữ nguyên chiều cao mà tăng đáy thêm 4m thì diện tích tăng \(20m^2\)
Đoạn AM dài:
9 + 3 = 12 (cm)
Đoạn AN dài:
12 + 3 = 15 (cm)
Diện tích hình tam giác AMN là:
15 x 12 : 2 = 90 (cm2)
Đáp số: 90 cm2
Không chắc đâu nha