Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta chọn hệ trục tọa độ sao cho: C là gốc tọa độ, CD → = a i → ; CB → = a j → ; CC ' → = a k →
Trong hệ tọa độ vừa chọn ta có: C(0; 0; 0), A’(a; a ; a), D(a; 0; 0), D’(a; 0; a)
CA ' → = (a; a; a), DD ' → = (0; 0; a)
Gọi ( α ) là mặt phẳng chứa CA ' → và song song với DD ' → . Mặt phẳng ( α ) có vecto pháp tuyến là: n → = CA ' → ∧ DD ' → = ( a 2 ; − a 2 ; 0) hay x – y = 0
Phương trình tổng quát của ( α ) là x – y = 0.
Ta có:
d(CA′, DD′) = d(D,( α )) =
Vậy khoảng cách giữa hai đường thẳng CA’ và DD’ là
Chọn đáp án C.
Gọi P là trung điểm cạnh A'D' khi đó BD//NP.
Khi đó góc giữa
Vì ABCD.A'B'C'D' là hình lập phương cạnh a nên
Suy ra
Do đó tam giác MNP đều
Tâm là giao điểm các đường chéo (O)
Bán kính mặt cầu là OA = 1/2 AC’
Đường chéo hình vuông cạnh a là a√2 (AC = a√2)
Xét tam giác vuông ACC’ tại C:
⇒ bán kính mặt cầu đi qua 8 đỉnh hình lập phương là (a√3)/2
Đáp án D.
Phương pháp giải: Dựng hình để xác định góc giữa hai đường thẳng chéo nhau: Góc giữa hai đường thẳng a và b là góc giữa a’ và b với a // a’.
Lời giải: Vì ABCD là hình vuông ⇒ A C ⊥ B D mà A C / / A ' C ' ⇒ A ' C ' ⊥ B D
Tâm mặt cầu tiếp xúc 6 mặt của hình lập phương là trung điểm O của EE’
Bán kính mặt cầu là OE = 1/2 EE’ = 1/2 AA’ = 1/2 a