K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 5 2018

Đáp số: \(\dfrac{a\sqrt{2}}{4}\) .Hỏi đáp Toán

Dễ thấy đường thẳng IJ song song với mặt phẳng (BB'D'D) nên khoảng cách giữa 2 đường thẳng IJ và B'D' bằng khoảng cách giữa đường thẳng IJ và mặt phẳng (BB'D'D) bằng khoảng cách từ điểm J tới mặt phẳng (BB'D'D).

Mặt khác, A'C' vuông góc với B'D' và Đ' nên A'C' vuông góc với (BB'D'D). Gọi O' là giao điểm 2 đường chéo B'D' và A'C'; E là trung điểm đoạn B'O thì JE là đường trung bình tam giác B'OC' nên \(JE\)vuông góc với (BB'D'D) và bằng \(\dfrac{1}{2}OC'=\dfrac{1}{4}A'C'=\dfrac{a\sqrt{2}}{4}\).

25 tháng 9 2017

Đáp án D

7 tháng 5 2017

Chọn C 

 

13 tháng 3 2017

Chọn D.

Gọi P là trung điểm BB’. Ta có BD//PN => BD//(MPN). Do đó:

d(MN;BD) = d(BD;(MPN)) = d(B;(MPN))

Nhận thấy  nên tam giác MPN vuông tại M.

Do đó 

Ta có 

Cách 2:

Gọi P là trung điểm BB’. Ta có BD//PN => BD//(MPN).

Đồng thời, MP//CB', PN//B'D' => (MPN)//(CB'D')

Do đó 

(vì PC’ cắt B’C tại trọng tâm tam giác BB’C’).

Nhận thấy tứ diện C'.CB'D' là tứ diện vuông tại C' nên 

Vậy 

Cách 3: Tọa độ hóa

Chọn hệ trục tọa độ Oxyz như hình vẽ. Khi đó, 

20 tháng 12 2018

Chọn C.

Gọi T là phép tịnh tiến theo vectơ  u → = 1 2 A D → , Ta có:

15 tháng 6 2018

Chọn B

Gọi M là trung điểm BB'. Ta có: CK // A'M => CK // (A'MD)

Khi đó d(CK, A'D) = d (CK, (A'MD)). Gắn hệ trục tọa độ như hình vẽ: 

Ta có: A(0;0;0), B(a;0;0), D(0;a;0), A'(0;0;a), B'(a;0;a), C(a;a;0), M(a;0;a/2).

Vậy mặt phẳng (A'MD) nhận  làm vectơ pháp tuyến.

Phương trình (A'MD) là x + 2y + 2z - 2a = 0

Do đó: 

7 tháng 4 2019

18 tháng 9 2019

Chọn D.

Cách 1: Trong mặt phẳng (CDD'C) gọi P là giao điểm của CK và C'D'.

Suy ra KD' là đường trung bình của  ∆ PCC' => D' là trung điểm của PC'.

Trong mặt phẳng (A'B'C'D') gọi M là giao điểm của PB' và A'D'

Ta có 

Tứ diện PCC'B' có C'P, C'B và C'B đôi một vuông góc với nhau.

Đặt  thì 

Suy ra 

Vậy 

Cách 2: (Đã học chương 3, HH12)

Chọn hệ trục tọa độ sao cho: D(0;0;0), trục Ox trùng với cạnh DC, trục Oy trùng với cạnh DA, trục Oz trùng với cạnh DD', chọn a = 1.

Ta có : 

10 tháng 2 2017

Chọn đáp án C.

Gọi P là trung điểm cạnh A'D' khi đó BD//NP.

Khi đó góc giữa 

Vì ABCD.A'B'C'D' là hình lập phương cạnh a nên 

Suy ra 

Do đó tam giác MNP đều 

13 tháng 8 2019