K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 10 2017

Đáp án D

Gọi M là giao điểm của AI và BC; gọi N là giao điểm của A'J và B'C'. Suy ra M,N lần lượt là trung điểm của BC,B'C'.

Ta có M N / / B B ' A A ' / / B B ' ⇒ M N / / A A ' . Mặt khác M N = B B ' ⇒ M N = A A ' .

Từ hai dữ kiện trên suy ra AMNA' là hình bình hành. Vậy thiết diện tạo bởi mặt phẳng (ẠIJ) và hình lăng trụ là hình bình hành.

19 tháng 9 2018

Đáp án D.

17 tháng 8 2018

24 tháng 4 2019

12 tháng 3 2017

Gọi M là trung điểm BC: BC = 2a; AG = 2 3 AI = 2 a 3 ; A ' A G ^ = 60 o .

Suy ra: A ' G = A G tan 60 o = 2 a 3 3

Ta có: V = S A B C . A ' G = 1 2 AB.AC.A'G

= 1 2 a. a 3 . 2 a 3 3 = a 3

Vậy  V 3 + V a 3 - 1 = a

Đáp án B

14 tháng 5 2019

Đáp án D

28 tháng 5 2018

12 tháng 2 2018

Đáp án C

Ta dễ dàng chứng minh được  A A ' / / B C C ' B '

⇒ d A A ' ; B C = d A A ' ; B C C ' B ' = d A ; B C C ' B '

Gọi G là trọng tâm của tam giác ABC. Suy ra A ' G ⊥ A B C .

Ta có   S Δ A B C = a 2 3 4

  ⇒ V A B C . A ' B ' C ' = A ' G . S Δ A B C ⇔ A ' G = V A B C . A ' B ' C ' S Δ A B C = a 3 3 4 : a 2 3 4 = a

Lại có

A M = a 3 2 ⇒ A G = 2 3 A M = a 3 3 ⇒ A A ' = A ' G 2 + A G 2 = 2 a 3 3

 Ta luôn có V A ' . A B C = 1 3 V A B C . A ' B ' C ' = 1 3 . a 3 3 4 = a 3 3 12 .

Mà V A B C . A ' B ' C ' = V A ' . A B C + V A ' . B C C ' B '  

⇒ V A ' . B C C ' B ' = V A B C . A ' B ' C ' − V A ' . A B C = a 3 3 4 − a 3 3 12 = a 3 3 6 .

Gọi M,M' lần lượt là trung điểm của BC và B'C'. Ta có B C ⊥ A M , B C ⊥ A ' G ⇒ B C ⊥ A M M ' A ' ⇒ B C ⊥ M M ' . Mà M M ' / / B B '  nên B C ⊥ B B ' ⇒ B C C ' B '  là hình chữ nhật

  ⇒ S B C C ' B ' = B B ' . B C = 2 a 3 3 . a = 2 a 2 3 3 .

 Từ

V A ' . B C C ' B ' = 1 3 d A ' ; B C C ' B ' . S B C C ' B ' ⇔ d A ' ; B C C ' B ' = 3 V A ' . B C C ' B ' S B C C ' B '  

⇒ d A ' ; B C C ' B ' = a 3 3 2 : 2 a 2 3 3 = 3 a 4 . Vậy d A A ' ; B C = 3 a 4 .

26 tháng 8 2019

26 tháng 5 2018