Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi G và G' lần lượt là trọng tâm của tam giác ABC và tam giác MNP . Ta có:
Cộng từng vế với vế ta có:
Vì G là trọng tâm của tam giác ABC nên
và G' là trọng tâm của tam giác MNP nên:
Do đó:
Hay
Vì điểm G cố định và là vectơ không đổi
nên G' là điểm cố định. Vậy mặt phẳng (MNP) luôn luôn đi qua điểm G' cố định.
a) Ta có II′ // BB′ và II’ = BB’
Mặt khác AA′ // BB′ và AA’ = BB’ nên : AA′ // II′ và AA’ = II’
⇒ AA’II’ là hình bình hành.
⇒ AI // A′I′
b) Ta có:
⇒ A ∈ (AB′C′) ∩ (AA′I′I)
Tương tự :
I′ ∈ (AB′C′) ∩ (AA′I′I) ⇒ (AB′C′) ∩ (AA′I′I) = AI′
Đặt AI′ ∩ A′I = E. Ta có:
Vậy E là giao điểm của AI’ và mặt phẳng (AB’C’)
c) Ta có:
Tương tự:
Vậy (AB′C′) ∩ (A′BC) = MN
Ta có: ABB'A' là hình bình hành, M, N là trung điểm của AA', BB' nên MN // AB (đường trung bình) suy ra MN // (ABC).
Tương tự, ta có NP // BC suy ra NP// (ABC).
Mặt phẳng (MNP) chứa hai đường thẳng cắt nhau MN, NP và MN, NP song song với mp(ABC) suy ra (MNP) //(ABC).
a) Do MM' lần lượt là trung điểm của BC và B'C' nên M'M//BB'//CC'. Vì vậy MM'//AA'.
Vì vậy tứ giác A'M'MA là hình bình hành. Suy ra: AM//A'M'.
b) Trong mp (AA'M'M), ta có: MA' ∩ AM' = K.
Do \(K\in A'M\) và \(A'M\in\left(AB'C'\right)\) nên K (AB'C').
c) Có \(O=AB'\cap A'B\) nên \(O\in\left(AB'C'\right)\cap\left(BA'C'\right)\).
Suy ra: \(d\equiv CO'\).
d) Trong (AB'C'): C'O ∩ AM' = G vì vậy G ( AMM') . Mà O, M' lần lượt là trung điểm AB' và B'C' nên G là trọng tâm của tam giác AB'C'.
Đặt \(\overrightarrow{AB}=\overrightarrow{a}\) , \(\overrightarrow{AC}=\overrightarrow{b}\) và \(\overrightarrow{AA'}=\overrightarrow{c}\) khi đó
\(\overrightarrow{AM}=\overrightarrow{AB}+\overrightarrow{BM}=\overrightarrow{a}+\frac{1}{2}.\overrightarrow{c}\)
\(\overrightarrow{AN}=\overrightarrow{AA'}+\overrightarrow{A'N}=\frac{1}{2}.\overrightarrow{b}+\overrightarrow{c}\)
\(\overrightarrow{AP}=\overrightarrow{AB}'+\overrightarrow{B'P}=\frac{2}{3}\overrightarrow{a}+\frac{1}{3}.\overrightarrow{b}+\overrightarrow{c}\)
Do \(c\frac{2}{3}.\overrightarrow{a}+\frac{1}{3}.\overrightarrow{b}+\overrightarrow{c}=\frac{2}{3}\left(\overrightarrow{a}+\frac{1}{2}.\overrightarrow{c}\right)+\frac{2}{3}\left(\frac{1}{2}.\overrightarrow{b}+\overrightarrow{c}\right)\)
Nên \(3\overrightarrow{AP}=2\overrightarrow{AM}+2\overrightarrow{AN}\)
Suy ra A, M, N, P đồng phẳng